Refine Your Search

Search Results

Viewing 1 to 15 of 15
Standard

Compatibility of Turbine Lubricating Oils

2023-05-01
CURRENT
ARP7120
This method is used for determining the compatibility of a candidate lubricant with specific reference lubricants. The reference lubricants to be used will typically be mandated by the owner of the product specification against which the candidate lubricant is being compared. This method is split into two procedures (Procedure A and Procedure B) with a summary of each procedure contained in Section 4.
Standard

Evaluation of Coking Propensity of Aviation Lubricants Using the Hot Liquid Process Simulator (HLPS) Single Phase Flow Technique

2003-07-03
HISTORICAL
ARP5996A
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under single phase flow conditions found in certain parts of gas turbine engines, for instance in bearing feed tubes. This method is applicable to lubricants with a coking propensity, as determined by this method, falling in the range 0.01 to 3.00 mg.
Standard

Evaluation of Coking Propensity of Aviation Lubricants Using the Single Phase Flow Technique

2014-01-02
HISTORICAL
ARP5996B
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under single phase flow conditions found in certain parts of gas turbine engines, for instance in bearing feed tubes. This method is applicable to lubricants with a coking propensity, as determined by this method, falling in the range 0.01 to 3.00 mg.
Standard

Minisimulator Method

2022-02-11
WIP
ARP6166A
This test method is designed to simulate the synergistic combinations of oil flow, temperature cycling, hot spots, and tribology that would typically be found in a gas turbine engine. The method is intended to quantitatively characterize changes in four basic oil properties that are brought about by exposure to the afore mentioned simulated turbine engine environment: the tendency of aviation lubricants to form coke deposits, viscosity changes, total acid number changes (TAN), and oil consumption.
Standard

Minisimulator Method

2016-09-12
CURRENT
ARP6166
This test method is designed to simulate the synergistic combinations of oil flow, temperature cycling, hot spots, and tribology that would typically be found in a gas turbine engine. The method is intended to quantitatively characterize changes in four basic oil properties that are brought about by exposure to the afore mentioned simulated turbine engine environment: the tendency of aviation lubricants to form coke deposits, viscosity changes, total acid number changes (TAN), and oil consumption.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2018-03-04
CURRENT
AS5780D
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix D Section D.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2017-08-04
HISTORICAL
AS5780C
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix D Section D.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
X