Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Crop Models for Varying Environmental Conditions

2002-07-15
2002-01-2520
New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models were developed to simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allowed only changes in light energy and used a less accurate linear approximation. For constant nominal environmental conditions, the simulation outputs of the new MEC models are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have more realistic exponential canopy growth, and have corrected harvest dates for potato and tomato.
Technical Paper

Designing to Mitigate Food Growing Failures in Space

2004-07-19
2004-01-2582
Future space life support systems may use crop plants to grow most of the crew’s food. A harvest failure can reduce the food available for future consumption. If the previously stored food is insufficient to last until the next harvest, the crew may go hungry. This paper considers how the overall food supply system should be designed to cope with food production failures. The food supply system for a mission will use grown food, or stored food, or both. The optimum food supply mix depends on the costs and failure probabilities of stored and grown food. A simple food system model assumes that either we obtain the nominal harvest or a failure occurs and no food is harvested. Given the probability that any particular harvest fails, it is easy to compute the expected number of failures and the total food shortfall over a mission.
Technical Paper

Evaluation of Fieldbus and Software Component Technologies for Use with Advanced Life Support

2001-07-09
2001-01-2299
Industrial process control has been dominated by closed architectures and proprietary protocols for the last three decades. In the late 1990’s, the advent of open fieldbus and middleware standards has greatly changed the process control arena. Fieldbus has pushed control closer and closer to the process itself. Middleware standards have exposed real-time process data to higher level software applications. Control systems can now be designed to minimize the reconfiguration costs associated with design changes. How can Advanced Life Support (ALS) benefit from these technologies? We consider designing the control system for the BIO-Plex and evaluate how complex it will be, the effort it will require, and how much it will it cost. Various fieldbus technologies were compared and Foundation Fieldbus was chosen for detailed evaluation. This new fieldbus was integrated with an existing ALS system.
Technical Paper

Matching Crew Diet and Crop Food Production in BIO-Plex

2000-07-10
2000-01-2397
This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato.
Technical Paper

Project Selection for NASA's R&D Programs

2005-07-11
2005-01-2916
The purpose of NASA's Research and Development (R&D) programs is to provide advanced human support technologies for the Exploration Systems Mission Directorate (ESMD). The new technologies must be sufficiently attractive and proven to be selectable for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are likely options for flight. The R&D programs must select an array of technology development projects, manage them, and either terminate or continue them, so as to maximize the delivered number of potentially usable advanced human support technologies. This paper proposes an effective project selection methodology to help manage NASA R&D project portfolios.
Technical Paper

Risk Management for Space Human Support Research and Technology

2005-07-11
2005-01-3009
NASA requires continuous risk management for all programs and projects. The risk management process identifies risks, analyzes their impact, prioritizes them, develops and carries out plans to mitigate or accept them, tracks risks and mitigation plans, and communicates and documents risk information. Project risk management is driven by the project goal and is performed by the entire team. Risk management begins early in the formulation phase with initial risk identification and development of a risk management plan and continues throughout the project life cycle. This paper describes a risk management approach that is suggested for use in NASA's Human Support Research and Technology (HSRT).
X