Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Direct Osmotic Concentration System for Spacecraft Wastewater Recycling

2007-07-09
2007-01-3035
Direct osmotic concentration (DOC) is a membrane treatment process for reclamation of space craft wastewater. It incorporates a novel system architecture that includes a forward osmosis (FO) and reverse osmosis (RO) subsystem for hygiene (gray) water, and a membrane distillation subsystem for the treatment of urine and humidity condensate. The products of these subsystems are combined and then post-treated by a catalytic oxidation subsystem. This paper documents progress made during the second year of a three year Rapid Technology Development Team (RTDT) effort.
Technical Paper

Initial Engineering Model Development for Sulfate Reducing Bacteria Colonization Potential Related to Forward Contamination and Ecosynthesis

2008-06-29
2008-01-1981
This research is intended to provide contamination and ecosynthesis researchers with an engineering development tool for understanding the productivity of metabolically active low temperature brine habitats as potential sites for bacterial colonization by forward contaminating Earth organisms. The specific extremophile microbial culturing conditions targeted were psychrophilic (low temperature), halophilic (high salt), high ambient sulfur, and anaerobic. These low temperature or freezing point suppressed brine habitats with high ambient sulfur concentrations have been suggested as potential subsurface water resources on both Mars and Europa, and may be common among potentially viable extant water environments in the outer solar system.
Journal Article

Lightweight Contingency Water Recovery System Concept Development

2008-06-29
2008-01-2143
The Lightweight Contingency Water Recovery System (LWC-WRS) harvests water from various sources in or around the Orion spacecraft in order to provide contingency water at a substantial mass savings when compared to stored emergency water supplies. The system uses activated carbon treatment (for urine) followed by forward osmosis (FO). The LWC-WRS recovers water from a variety of contaminated sources by directly processing it into a fortified (electrolyte and caloric) drink. Primary target water sources are urine, seawater, and other on board vehicle waters (often referred to as technical waters). The product drink provides hydration, electrolytes, and caloric requirements for crew consumption. The system hardware consists of a urine collection device containing an activated carbon matrix (Stage 1) and an FO membrane treatment element (or bag) which contains an internally mounted cellulose triacetate membrane (Stage 2).
Technical Paper

New Concepts and Performance of the Direct Osmotic Concentration Process for Wastewater Recovery in Advanced Life Support Systems

2006-07-17
2006-01-2086
Direct osmotic concentration (DOC) has been identified as a potential wastewater treatment process for potable reuse in advanced life support systems (ALSS). As a result, further development of the DOC process is being supported by a NASA Rapid Technology Development Team (RTDT) program. DOC is an integrated membrane system combining three unique membrane separation processes including forward osmosis (FO), membrane distillation (MD), and reverse osmosis (RO) that is designed to treat separate wastewater streams comprising hygiene wastewater, humidity condensate, and urine. An aqueous phase catalytic oxidation (APCO) process is incorporated as post treatment for the product water. In an ongoing effort to improve the DOC process and make it fully autonomous, further development of the three membrane technologies is being pursued.
Technical Paper

Proof of Concept Testing of Low Temperature Brine Microbial Habitats for Subsurface Mars and Europa Habitat Viability Scenario Testing and Astrobiology Biosignature Instrument Development

2006-07-17
2006-01-2008
Presented is a synopsis of ongoing research into the development of techniques and hardware required to produce useable quantities of astrobiology relevant biomass under controlled and repeatable laboratory conditions. This study has developed microbial habitats (referred to as digesters, due to their biomass production function) capable of sustaining microbial communities under low temperature, high salt, high sulfate, anaerobic conditions. This set of basic conditions is necessary to develop biomass material that is analog to the biomass that would be present in subsurface brine habitats on Mars or Europa, from the perspective of several critical biochemical properties.
X