Refine Your Search

Topic

Search Results

Standard

AIR CONDITIONING, HELICOPTER, GENERAL REQUIREMENTS FOR

1970-10-26
HISTORICAL
ARP292B
These recommendations are written to cover the general requirements of helicopter air conditioning and are sub-divided as follows: (1) Air Conditioning System - Dealing with the general design aspects. (2) Air Conditioning Equipment - Design requirements for satisfactory system function and performance. (3) Air Conditioning System Design Requirements -General information for use of those concerned in meeting requirements contained herein.
Standard

AIRPLANE CABIN PRESSURIZATION

1959-11-15
HISTORICAL
ARP367A
These recommendations cover the general field of airplane cabin pressurization equipment and are subdivided as follows: GENERAL REQUIREMENTS FOR PRESSURIZED AIRPLANES CABIN AIR COMPRESSORS CABIN PRESSURE REGULATING EQUIPMENT ENGINE BLEED AIR DUCT SYSTEMS CABIN PRESSURE DUCTING SYSTEM
Standard

AIRPLANE CABIN PRESSURIZATION

1960-03-01
HISTORICAL
ARP367B
These recommendations cover the general field of airplane cabin pressurization equipment and are subdivided as follows: GENERAL REQUIREMENTS FOR PRESSURIZED AIRPLANES CABIN AIR COMPRESSORS CABIN PRESSURE REGULATING EQUIPMENT ENGINE BLEED AIR DUCT SYSTEMS CABIN PRESSURE DUCTING SYSTEM
Standard

Acoustical Considerations for Aircraft Environmental Control System Design

2011-01-14
HISTORICAL
AIR1826
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in the bibliography and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs.
Standard

Acoustical Considerations for Aircraft Environmental Control System Design

2016-08-11
CURRENT
AIR1826A
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in 2.3 and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs.
Standard

Airborne Chemicals in Aircraft Cabins

2021-06-22
CURRENT
AIR4766/2A
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: Origins of chemical airborne contaminants during routine operating and failure conditions. Exposure control measures, including design, maintenance, and worker training/education. This AIR does not deal with airflow requirements.
Standard

Aircraft Fuel Weight Penalty Due to Air Conditioning

2011-07-25
CURRENT
AIR1168/6A
This section relates the engineering fundamentals and thermophysical property material of the previous sections to the airborne equipment for which thermodynamic considerations apply. For each generic classification of equipment, information is presented for the types of equipment included in these categories, and the thermodynamic design considerations with respect to performance, sizing, and selection of this equipment.
Standard

Aircraft Fuel Weight Penalty Due to Air Conditioning

2004-06-23
HISTORICAL
AIR1168/8
The purpose of this section is to provide methods and a set of convenient working charts to estimate penalty values in terms of take-off fuel weight for any given airplane mission. The curves are for a range of specific fuel consumption (SFC) and lift/drag ratio (L/D) compatible with the jet engines and supersonic aircraft currently being developed. A typical example showing use of the charts for an air conditioning system is given. Evaluation of the penalty imposed on aircraft performance characteristics by the installation of an air conditioning system is important for two reasons: 1 It provides a common denominator for comparing systems in the preliminary design stage, thus aiding in the choice of system to be used. 2 It aids in pinpointing portions of existing systems where design improvements can be most readily achieved.
Standard

Aircraft Fuel Weight Penalty Due to Air Conditioning

2011-07-25
CURRENT
AIR1168/8A
The purpose of this section is to provide methods and a set of convenient working charts to estimate penalty values in terms of take-off fuel weight for any given airplane mission. The curves are for a range of specific fuel consumption (SFC) and lift/drag ratio (L/D) compatible with the jet engines and supersonic aircraft currently being developed. A typical example showing use of the charts for an air conditioning system is given. Evaluation of the penalty imposed on aircraft performance characteristics by the installation of an air conditioning system is important for two reasons: 1 It provides a common denominator for comparing systems in the preliminary design stage, thus aiding in the choice of system to be used. 2 It aids in pinpointing portions of existing systems where design improvements can be most readily achieved.
Standard

Characteristics of Equipment Components, Equipment Cooling System Design, and Temperature Control System Design

2004-06-22
HISTORICAL
AIR1168/6
This section relates the engineering fundamentals and thermophysical property material of the previous sections to the airborne equipment for which thermodynamic considerations apply. For each generic classification of equipment, information is presented for the types of equipment included in these categories, and the thermodynamic design considerations with respect to performance, sizing, and selection of this equipment.
Standard

ENVIRONMENTAL CONTROL SYSTEM CONTAMINATION

1981-01-30
HISTORICAL
AIR1539
This publication will be limited to a discussion of liquid and particulate contaminants which enter the aircraft through the environmental control system (ECS). Gaseous contaminants such as ozone, fuel vapors, sulphates, etc., are not covered in this AIR. It will cover all contamination sources which interface with ECS, and the effects of this contamination on equipment. Methods of control will be limited to the equipment and interfacing ducting which normally falls within the responsiblity of the ECS designer.
Standard

ENVIRONMENTAL SYSTEMS SCHEMATIC SYMBOLS

1989-11-01
HISTORICAL
ARP780A
This ARP provides symbols to schematically represent aerospace vehicle environmental system components on functional flow schematic drawings and graphical computerized output. The symbols are for use on simplified diagrams that provide basic information about an environmental system. Symbols are provided to represent basic types of components used in environmental systems. Simple variations of basic symbol types are provided. Words on the schematic diagram, special symbol codes, or symbols that combine basic symbol types (Section 5) can be used to augment the basic symbols when appropriate. Special or combined symbols not contained in this document should be defined on the schematic diagram. An example of a complete schematic is given in Section 6. A bibliography of other documents on environmental system symbols is found in Section 7.
Standard

ENVIRONMENTAL SYSTEMS SCHEMATIC SYMBOLS

1963-05-01
HISTORICAL
ARP780
These recommendations provide a list of graphical symbols for use on environmental systems schematic diagrams. The symbols listed are those most commonly employed on engineering drawings.
Standard

Electrical and Electronic Equipment Cooling in Commercial Transports

2021-08-10
CURRENT
AIR64C
This document considers the cooling of equipment installed in equipment centers, which usually consist of rack-mounted equipment and panel mounted equipment in the flight deck. Instances where these two locations result in different requirements are identified. This document generally refers to the cooled equipment as E/E equipment, denoting that both electrical and electronic equipment is considered, or as an E/E equipment line-replaceable-unit (LRU). The majority of cooled equipment takes the form of LRUs. The primary focus of this document is E/E equipment which uses forced air cooling to keep the equipment within acceptable environmental limits. These limits ensure the equipment operates reliably and within acceptable tolerances. Cooling may be supplied internally or externally to the E/E equipment case. Some E/E equipment is cooled solely by natural convection, conduction, and radiation to the surrounding environment.
Standard

Engine Bleed Air Systems for Aircraft

2004-06-22
HISTORICAL
ARP1796
This ARP discusses design philosophy, system and equipment requirements, installation environment and design considerations for systems within the ATA 100 specification, Chapter 36, Pneumatic (reference 1). This ATA system/chapter covers equipment used to deliver compressed air from a power source to connecting points for other systems such as air conditioning, pressurization, anti-icing, cross-engine starting, air turbine motors, air driven hydraulic pumps, and other pneumatic demands. The engine bleed air system includes components for preconditioning the compressed air (temperature, pressure or flow regulation), ducting to distribute high or low pressure air to the using systems, and sensors/instruments to indicate temperature and pressure levels within the system. The engine bleed air system interfaces with the following ATA 100 systems: The interface with these systems/chapters is at the inlet of the shutoff/control valve of each associated system.
Standard

Engine Bleed Air Systems for Aircraft

2020-05-12
CURRENT
ARP1796B
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, installation environment and design considerations for military and commercial aircraft systems within the Air Transport Association (ATA) ATA 100 specification, Chapter 36, Pneumatic. This ATA system/chapter covers equipment used to deliver compressed air from a power source to connecting points for other systems such as air conditioning, pressurization, ice protection, cross-engine starting, air turbine motors, air driven hydraulic pumps, on board oxygen generating systems (OBOGS), on board inert gas generating systems (OBIGGS), and other pneumatic demands. The engine bleed air system includes components for preconditioning the compressed air (temperature, pressure or flow regulation), ducting to distribute high or low pressure air to the using systems, and sensors/instruments to indicate temperature and pressure levels within the system.
X