Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-05-14
Technical Paper

3-D Numerical Study of Fluid Flow and Pressure Loss Characteristics through a DPF with Asymmetrical Channel size

2011-04-12
2011-01-0818
The main objective of the current paper was to investigate the fluid flow and pressure loss characteristics of DPF substrates with asymmetric channels utilizing 3-D Computational Fluid Dynamics (CFD) methods. The ratio of inlet to outlet channel width is 1.2. First, CFD results of velocity and static pressure distributions inside the inlet and outlet channels are discussed for the baseline case with both forward and reversed exhaust flow. Results were also compared with the regular DPF of same cell structure and wall material properties. It was found that asymmetrical channel design has higher pressure loss. The lowest pressure loss was found for the asymmetrical channel design with smaller inlet channels. Then, the effects of DPF length and filter wall permeability on pressure loss, flow and pressure distributions were investigated.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2019-03-12
WIP
AMS3961/3A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2015-12-02
CURRENT
AMS3961/3
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2015-12-02
CURRENT
AMS3961/2
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2019-03-12
WIP
AMS3961/2A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2015-12-02
CURRENT
AMS3961/1
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2019-03-12
WIP
AMS3961/1A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Technical Paper

747 ENGINE INSTALLATION FEATURES

1968-02-01
680335
New approaches to problems such as noise, temperature control of accessories and equipment in the nacelle, as well as improved safety features, are necessary in a modern high by-pass engine installation. The means of supporting the engine, cowling design, and maintainability features combine to improve the state of the art that a more economic airplane will result.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Technical Paper

90 Ah Dependent Pressure Vessel (DPV) Nickel Hydrogen Battery Qualification Test Results

1999-08-02
1999-01-2590
In 1995, the Naval Research Laboratory (NRL) began a program to investigate whether a 90 Ah dependent pressure vessel (DPV) NiH2 battery pack could be a lower volume replacement for a 90 Ah NiH2 IPV spacecraft battery. Nickel Hydrogen (NiH2) dependent pressure vessel (DPV) battery cells are presumed to offer all the features of the NiH2 IPV battery cell with considerably less volume. To achieve this reduction in volume, the DPV cell utilizes a canteen shaped pressure vessel with reduced thickness wall, flat sides and curved ends. The cells can be packaged similar to prismatic nickel cadmium battery cells. Moreover, like NiCd cells, a fully charged DPV cell must rely upon an adjacent battery cell or structure for support and to maintain pressure vessel integrity. Seventeen 90 Ah NiH2 DPV cells were delivered to NR in 1998 for qualification tests. An eleven-cell half battery pack was manufactured and tested to validate the advantages of the DPV design.
Technical Paper

912iS Fuel Injected Aircraft Engine

2012-10-23
2012-32-0049
The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine.
Technical Paper

94 GHz MMW Imaging Radar System

1991-09-01
912208
The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna and digital signal processor, has an update rate of 10 times per second, 0.35° azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.
Technical Paper

A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan

2016-06-15
2016-01-1249
A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
Technical Paper

A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan

2016-06-15
2016-01-1805
A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
X