Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

10 KWe Dual-Mode Space Nuclear Power System for Military and Scientific Applications

1992-08-03
929072
A 10 KWe dual-mode space power system concept has been identified which is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. The direct thrust capability can provide tens of pounds of thrust at a specific impulse of around 730 seconds for maneuvers that must be performed more rapidly. The direct thrust allows the nuclear power system to move a payload from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) in less than one month using approximately half the propellant of a cryogenic chemical stage.
Standard

13-Conductor Electrical Cable between Towing Vehicle and Trailer

2022-06-15
WIP
J3284
This SAE standard establishes the minimum construction and performance requirements for a combination cable consisting of 9 conductors and 2 twisted pairs for use on trucks, trailers, and dollies. The cable includes power, ground and 2 jacketed/unshielded twisted paired signal circuits. This standard will be used in conjunction with the SAEJ XXXX “13 Conductor Electrical Connector (Plug and Receptacle) between Towing Vehicle and Trailer”. The standard will also include the test procedures, design and performance requirements for the cable.
Technical Paper

3D PIV in Wind Tunnel Applications: Measurements of a Truck Wake

1999-10-19
1999-01-5600
Three-component Particle Image Velocimetry (3D PIV) is a fluid velocity measurement technique that has evolved from the laboratory to become a method appropriate for use in large-scale wind tunnel testing. An example application of 3D PIV in a wind tunnel test is described. The PIV technique was applied to characterize the wake of The Ground Transportation System (GTS) model developed for the Department of Energy (DOE) Heavy Vehicle Drag Reduction (HVDR) program. The test was performed in the Ames/Army 7×10 foot wind tunnel. The objective of the PIV measurements was to validate the HVDR computational fluid dynamics code. The PIV method and PIV system are described. Sample truck wake data with and without boattail attachments are shown. 3D PIV system successfully captured the effects of the boattails on the truck wake.
Journal Article

500 Hours Endurance Test on Biodiesel Running a Euro IV Engine

2010-10-25
2010-01-2270
A 500 hours endurance test was performed with a heavy-duty engine (Euro IV); MAN type D 0836 LFL 51 equipped with a PM-Kat®. As fuel 100% biodiesel was used that met the European specification EN 14214. The 500 hours endurance test included both the European stationary and transient cycle (ESC and ETC) as well as longer stationary phases. During the test, regulated emissions (carbon monoxide, nitrogen oxides, hydrocarbons and particulate matter), the particle number distribution and the aldehydes emission were continuously measured. For comparison, tests with fossil diesel fuel were performed before and after the endurance test. During the endurance test, the engine was failure-free for 500 hours with the biogenic fuel. There were almost no differences in specific fuel consumption during the test, but the average exhaust gas temperature increased by about 15°C over the time. Emissions changed only slightly during the test.
Technical Paper

727, B-52 Retrofit with PW2037…. Meeting Today's Requirements

1982-02-01
821443
Offering aircraft fuel efficiency improvements of 30 to 40% over the powerplants it will replace, PW2037 retrofit in the 727-200 Advanced and B-52 aircraft is attracting heightened interest. A comparison of PW2037 technical characteristics with current aircraft powerplants substantiates the improvement potential.The engine installation and modifications necessary for aircraft system compatibility do not impose significant increases in complexity or cost. The resultant improvements in aircraft capability (727 and B-52) and economic viability to airlines (7271 produce aircraft uniquely suited to today's operational requirements and constrained equipment budgets.
Journal Article

A Carbon Intensity Analysis of Hydrogen Fuel Cell Pathways

2021-03-02
2021-01-0047
A hydrogen economy is an increasingly popular solution to lower global carbon dioxide emissions. Previous research has been focused on the economic conditions necessary for hydrogen to be cost competitive, which tends to neglect the effectiveness of greenhouse gas mitigation for the very solutions proposed. The holistic carbon footprint assessment of hydrogen production, distribution, and utilization methods, otherwise known as “well-to-wheels” carbon intensity, is critical to ensure the new hydrogen strategies proposed are effective in reducing global carbon emissions. When looking at these total carbon intensities, however, there is no single clear consensus regarding the pathway forward. When comparing the two fundamental technologies of steam methane reforming and electrolysis, there are different scenarios where either technology has a “greener” outcome.
Technical Paper

A Combustion Products Analyzer for Contingency Use During Thermodegradation Events on Spacecraft

1991-07-01
911479
As mission length and the number and complexity of payload experiments increase, so does the probability of thermodegradation contingencies (e.g. fire, chemical release and/or smoke from overheated components or burning materials), which could affect mission success. When a thermodegradation event occurs on board a spacecraft, potentially hazardous levels of toxic gases could be released into the internal atmosphere. Experiences on board the Space Shuttle have clearly demonstrated the possibility of small thermodegradation events occurring during even relatively short missions. This paper will describe the Combustion Products Analyzer (CPA), which is being developed under the direction of the Toxicology Laboratory at Johnson Space Center to provide necessary data on air quality in the Shuttle following a thermodegradation incident.
Technical Paper

A Comparison of the Radiation Environments in Deep Space

2007-07-09
2007-01-3114
Both humans and onboard radiosensitive systems (electronics, materials, payloads and experiments) are exposed to the deleterious effects of the harsh space radiations found in the space environment. The purpose of this paper is to present the space radiation environment extended to deep space based on environment models for the moon, Mars, Jupiter, and Saturn and compare these radiation environments with the earth's radiation environment, which is used as a comparative baseline. The space radiation environment consists of high-energy protons and electrons that are magnetically “trapped” in planetary bodies that have an intrinsic magnetic field; this is the case for earth, Jupiter, and Saturn (the moon and Mars do not have a magnetic field). For the earth this region is called the “Van Allen belts,” and models of both the trapped protons (AP-8 model) and electrons (AE-8 model) have been developed.
Technical Paper

A Current Survey of Aircraft Fuel Gauging Systems

1967-02-01
670263
Fuel gaging systems in over 90% of small civil aircraft use the automotive float type sender with an electrical indicator. Considering such factors as dihedral, summing, temperature, variation in specific gravity of fuel used, and input voltage, the accuracy is approximately ±5% of full scale and ±10% of the reading. A more accurate system is highly desirable for weight control, flight planning, and possible c. g. consideration. Among other gaging systems available are improved float types at moderate costs, capacitive systems with good accuracy at comparatively high initial cost and increased maintenance, and a mass sensing system at moderate cost. The pros and cons of each system are discussed. Factors contributing to errors in readout and often overlooked are variations in height versus volume of fuel tanks because of manufacturing tolerances, and changes in shape and relative position of tanks under different loading when in flight.
Technical Paper

A Feasibility Study on the Use of Ethanol/Automotive Gasoline Blends in General Aviation Aircraft

1986-10-01
861598
Considering the rising cost and diminished availability of 100-octane, low-lead (100 LL) aviation gasoline, owners of aircraft certified for 100 LL may be forced to find an alternative fuel in the near future. This study proposed a blend of 200-proof anhydrous ethanol ($1.70 per gallon) and automotive gasoline ($1.15 per gallon) as a replacement for aviation gasoline ($1.90 per gallon). The research program included materials compatibility tests, Cooperative Fuel Research (CFR) engine tests, static thrust tests, and a flight test to determine the feasibility of such a blend as a fuel for an unmodified aircraft engine. Throughout all tests, blends burned as well as aviation gasoline. The static thrust tests indicated that a blend of 35% ethanol/65% automotive gasoline yielded the maximum thrust output. The materials tests revealed metals to be unaffected by contact with the blend fuel. Fibrous growths were discovered in the blend and in the automotive gasoline samples.
Technical Paper

A Feed-Back Thermal Regulation System for the Columbus Free Flyer Battery Section

1991-07-01
911409
The BSTCA (Battery Section Thermal Control Assembly) is a module of the Columbus MTFF (Man Tended Free Flyer). Electrical power required during eclipse periods, is made available from six nickel hydrogen batteries. A sophisticated multi-radiator configuration, with a hybrid heat pipe network, has evolved. Autonomous control of the assembly heat rejection capability has been achieved by a integrated network of LTHP's (Liquid Trap Heat Pipes) and CCHP's (Constant Conductance Heat Pipes) under the control of a conventional HCU (Heater Control Unit). The process of design selection and verification is discussed, for the BSTCA, with a detailed LTHP component presentation.
Technical Paper

A Five-Point Program Designed to Eliminate Contamination and Corrosion of Fuel Tanks on Aircraft Using Jet Turbine Fuel

1965-02-01
650364
A general discussion of the problems resulting from the introduction of contaminated jet turbine fuel into integral fuel tanks and a five-point program designed to eliminate the contamination problem are presented. Some areas covered are: inspection of fuel sources for contamination to prevent contaminants from entering the aircraft fuel system; decontamination of fuel sources; inspection and decontamination of the aircraft fuel system; use of additives for the control of microorganisms; materials and methods, including a simple system for introducing the additives. The good and bad points of all fuel tank sealing and finishing systems presently in use are discussed, and a new finish system completely resistant to degradation by microorganisms is introduced. Simple means of controlling fuel quality entering the aircraft from uncontrolled sources are outlined.
Technical Paper

A Fluidically Controlled Aircraft Fuel Transfer System

1970-02-01
700786
Traditional methods of electrical sensing and control in jet aircraft fuel transfer systems have proven expensive, hard to maintain, and sometimes unreliable. This paper presents a new concept in fuel sensing and control using fluidics. The objective was to construct a general three-tank model system for exploring concept feasibility. Although a single medium (fuel) approach was sought, the interim model used a pneumatic logic and sensing system for fuel control. The laboratory model effectively demonstrated fuel level control, diversion of fuel transfer at the command of an automatic logic system, and pilot override. A trade study showed gains in reliability and maintainability over the current method of aircraft fuel transfer control. Advantages were: no dependence on electric or hydraulic power, ease of maintenance, and fail-safe operation.
Technical Paper

A Fuel-Cell Electric Vehicle with Cracking and Electrolysis of Ammonia

2010-11-02
2010-01-1791
Hydrogen has difficulties in handling in a fuel cell vehicle, and has a fault with taking a big space there. The authors have proposed a hydrogen generation system using ammonia as a liquid fuel for fuel-cell electric vehicles. Ammonia has an advantage not to emit greenhouse effect gases because it does not contain a carbon atom. Hydrogen content of ammonia is 17.6 wt% and hydrogen quantity per unit mass is large. Ammonia can be easily dissociated to hydrogen and nitrogen by heating. Therefore, ammonia is an attractive hydrogen supply source for fuel cell vehicles. The ammonia hydrogen generation system of this study consists of a vaporizer, a heat exchanger and a cracking reactor with a separator. Ammonia is heated with the heat exchanger and sent to the cracking reactor, after it is evaporated through the vaporizer from the liquid ammonia. The ammonia is cracked to hydrogen and nitrogen with an appropriate catalyst.
Technical Paper

A High-Speed Fuel Lubricated Hybrid Thrust Bearing for Limited-Life Turbine Engines

1990-09-01
902023
The feasibility of operating a mainshaft thrust bearing at high speeds with jet fuel mist as the coolant and lubricant has been demonstrated in both rig and engine testing. A split-inner ring hybrid thrust bearing ( silicon nitride balls ) was successfully operated to 1.67 x 106 DN at maximum Hertzian contact stresses up to 322,000 psi. The bearing configuration also included BG-42 inner and outer rings and a Dupont polyimide Vespel separator. The incorporation of a fuel lubrication system for limited-life turbine engines has many advantages, including; Lower cost ( elimination of oil system related hardware ). Enhanced long-term storage reliability Increased cold start reliability.
Technical Paper

A Laboratory Setup for Observation of Loop Heat Pipe Characteristics

2006-07-17
2006-01-2170
Heat pipes, loop heat pipes and capillary pumped loops are heat transfer devices driven by capillary forces with high-effectiveness & performance, offering high-reliability & flexibility in varying g-environments. They are suitable for spacecraft thermal control where the mass, volume, and power budgets are very limited. The Canadian Space Agency is developing loop heat pipe hardware aimed at understanding the thermal performance of two-phase heat transfer devices and in developing numerical simulation techniques using thermo-hydraulic mathematical models, to enable development of novel thermal control technologies. This loop heat pipe consists of a cylindrical evaporator, compensation chamber, condenser along with vapor and liquid lines, which can be easily assembled/disassembled for test purposes. This laboratory setup is especially designed to enable the visualization of fluid flow and phase change phenomena.
Journal Article

A MATLAB Simulink Based Co-Simulation Approach for a Vehicle Systems Model Integration Architecture

2020-03-10
2020-01-0005
In this paper, a MATLAB-Simulink based general co-simulation approach is presented which supports multi-resolution simulation of distributed models in an integrated architecture. This approach was applied to simulating aircraft thermal performance in our Vehicle Systems Model Integration (VSMI) framework. A representative advanced aircraft thermal management system consisting of an engine, engine fuel thermal management system, aircraft fuel thermal management system and a power and thermal management system was used to evaluate the advantages and tradeoffs in using a co-simulation approach to system integration modeling. For a system constituting of multiple interacting sub-systems, an integrated model architecture can rapidly, and cost effectively address technology insertions and system evaluations. Utilizing standalone sub-system models with table-based boundary conditions often fails to effectively capture dynamic subsystem interactions that occurs in an integrated system.
Technical Paper

A Mach 3+ Aircraft Fuel Pump

1965-02-01
650503
The severe temperatures encountered in aircraft at speeds above Mach 3 have created a need for highly efficient use of the fuel supply on board the aircraft as a heat sink for the cooling system. Since the fuel temperature limitations and heat rejection characteristics of the present fixed displacement fuel pumps represent inefficiencies in the system, the use of higher efficiency variable displacement piston type fuel pumps is analyzed. The design of such a pump is shown to be practical and within the present state of the art. It is shown that the effect of the change on the fuel control system is moderate and requires no new or untried techniques.
Technical Paper

A Methodology for Long Range Prediction of Air Transportation

1980-04-01
800768
The purpose of a research study reported in this paper was to provide a framework and methodology for long term projection of demand for aviation fuels. It required a close examination of some of the fundamental problems of predicting long run futures. The approach taken includes two basic components. The first was a new technique for establishing the socioeconomic environment within which the future aviation industry is embedded. The concept utilized was a definition of an overall societal objective for the very long run future. Within a framework so defined, a set of scenarios by which the future will unfold are then written. These scenarios provide the determinants of the air transport industry operations and accordingly provide an assessment of future fuel requirements. The second part was the modeling of the industry in terms of an abstracted set of variables to represent the overall industry performance on a macro scale.
X