Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Decoupling the Interactions of Hydrocarbons and Oxides of Nitrogen Over Diesel Oxidation Catalysts

2011-04-12
2011-01-1137
Oxidation of NO to NO₂ over a Diesel Oxidation Catalyst (DOC) plays an important role in different types of aftertreatment systems, by enhancing NOx storage on adsorber catalysts, improving the NOx reduction efficiency of SCR catalysts, and enabling the passive regeneration of Diesel Particulate Filters (DPF). The presence of hydrocarbon (HC) species in the exhaust is known to affect the NO oxidation performance over a DOC; however, specific details of this effect, including its underlying mechanism, remain poorly understood. Two major pathways are commonly considered to be responsible for the overall effect: NO oxidation inhibition, due to the presence of HC, and the consumption of the NO₂ produced by reaction with hydrocarbons. In this work we have attempted to decouple these two pathways, by adjusting the catalyst inlet concentrations of NO and NO₂ to the thermodynamic equilibrium levels and measuring the composition changes over the catalyst in the presence of HC species.
Technical Paper

Demonstration of SCR on a Diesel Particulate Filter System on a Heavy Duty Application

2015-04-14
2015-01-1033
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. Typical 2013 Heavy Duty Diesel emission control systems include a DOC upstream of a catalyzed soot filter (CSF) which is followed by urea injection and the SCR sub-assembly. There is a strong desire to further increase the NOx conversion capability of such systems, which would enable additional fuel economy savings by allowing engines to be calibrated to higher engine-out NOx levels. One potential approach is to replace the CSF with a diesel particulate filter coated with SCR catalysts (SCRF® technology, hereafter referred to as SCR-DPF) while keeping the flow-through SCR elements downstream, which essentially increases the SCR volume in the after-treatment assembly without affecting the overall packaging.
Journal Article

Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications

2011-04-12
2011-01-1312
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. Typical 2010 Heavy-Duty systems include a DOC along with a catalyzed soot filter (CSF) in addition to the SCR sub-assembly. There is a strong desire to further increase the NOx conversion capability of such systems, to enable additional fuel economy savings by allowing engines to be calibrated to higher engine-out NOx levels. One potential approach is to replace the CSF with a diesel particulate filter coated with SCR catalysts (SCR-DPF) while keeping the flow-through SCR elements downstream, which essentially increases the SCR volume in the after-treatment assembly without affecting the overall packaging. In this work, a system consisting of SCR-DPF was evaluated in comparison to the DOC + CSF components from a commercial 2010 DOC + CSF + SCR system on an engine with the engine EGR on (standard engine-out NOx) and off (high engine-out NOx).
Journal Article

Development of SCR on High Porosity Substrates for Heavy Duty and Off-Road Applications

2014-04-01
2014-01-1521
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. There is a drive to reduce the overall packaging volume of the aftertreatment system for these applications. In addition, more active SCR catalysts will be needed as the applications become more challenging: e.g. lower temperatures and higher engine out NOx, for fuel consumption improvements. One approach to meet the challenges of reduced volume and/or higher NOx reduction is to increase the active site density of the SCR catalyst by coating higher amount of SCR catalyst on high porosity substrates (HPS). This approach could enable the reduction of the overall packaging volume while maintaining similar NOx conversion as compared to 2010/2013 systems, or improve the NOx reduction performance for equivalent volume and NH3 slip.
Technical Paper

Engine Performance of Cu- and Fe-Based SCR Emission Control Systems for Heavy Duty Diesel Applications

2011-04-12
2011-01-1329
Since early 2010, most new medium- and heavy-duty diesel vehicles in the US rely on urea-based Selective Catalytic Reduction (SCR) technology for meeting the most stringent regulations on nitrogen oxides (NOx) emissions in the world today. Catalyst technologies of choice include Copper (Cu)- and Iron (Fe)-based SCR. In this work, the performances of Fe-SCR and Cu-SCR were investigated in the most commonly used DOC + CSF + SCR system configuration. Cu-SCR offered advantages over Fe-SCR in terms of low temperature conversion, NO₂:NOx ratio tolerance and NH₃ slip, while Fe-SCR demonstrated superior performance under optimized NO₂:NOx ratio and at higher temperatures. The Cu-SCR catalyst displayed less tolerance to sulfur (S) exposure. Reactor testing has shown that Cu-SCR catalysts deactivate at low temperature when poisoned by sulfur.
Technical Paper

Experimental and Computational Study of DOC on CSF for Heavy Duty Diesel Applications

2019-04-02
2019-01-0586
For diesel exhaust aftertreatment applications with space limitations, as well as to move the selective catalytic reduction system (SCR) to a warmer location closer to the engine, DOC on CSF technology can be used. This technology combines the diesel oxidation catalyst (DOC) and catalyzed soot filter (CSF) functionalities in one component, thereby enabling volume reduction. DOC on CSF maintains the abatement of hydrocarbon (HC), carbon monoxide (CO), and particulate matter (PM), and the oxidation of nitric oxide (NO) to nitrogen dioxide (NO2) for passive soot oxidation and fast SCR reaction of NOx on a downstream SCR catalyst. In this study, the performance of DOC on CSF was compared to a DOC + bare diesel particulate filter (DPF) and a DOC + CSF system, to understand the performance benefits and challenges. All the components were optimized individually for their respective functions. The DOC on CSF was optimized for NO oxidation and passive soot oxidation performance.
X