Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

100-kWe Lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion

1992-08-03
929446
An integration study was performed coupling an SP-100 reactor with either a Brayton or Stirling power conversion subsystem. A power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. Previous studies were used to select the power conversion optimum operating conditions (ratio of hot-side temperature to cold-side temperature). Results of the study indicated that either the Brayton or Stirling power conversion subsystems could be integrated with the SP-100 reactor for either a lunar or Mars surface power application.
Book

2018 Ultimate GD&T Pocket Guide 2nd Ed

2020-11-23
The 2018 Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. This one-of-a-kind reference guide includes more than 100 detailed examples to illustrate concepts. Numerous charts for quick reference provide explanations of each GD&T symbol, modifier, and more. This valuable on-the-job resource clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2018.
Technical Paper

270-Vdc/Hybrid 115-Vac Electric Power Generating System Technology Demonstrator Evolution to a Dual-Channel, More Electric Aircraft Technology Development Testbed

1991-09-01
912183
Sundstrand has been investigating 270-Vdc/hybrid 115-Vac electrical power generating systems (EPGS) technology in preparation for meeting the electrical power generating system (EPGS) requirements for future aircraft (1). Systems such as the one being investigated are likely to be suitable for the More-Electric Aircraft (MEA) concepts presently under industry and military study. The present Sundstrand single-channel testbed is being further expanded to better understand the electrical system performance characteristics and power quality requirements of an MEA in which traditional mechanical subsystems are replaced by those of a “more-electric” nature. This paper presents the most recent Sundstrand 270-Vdc system transient performance data, and describes the modifications being made to the 270-Vdc/hybrid 115-Vac testbed.
Technical Paper

3-D Ultrasound for Medical Imaging in Space

1997-07-01
972286
Ultrasound is attractive for medical imaging in space because scanners can be small, lightweight, low power, and have minimal electromagnetic emissions. In addition, unlike conventional 2-D ultrasound. 3-D ultrasound allows an operator with no diagnostic skills to collect high-quality scans that can be interpreted by a remote expert. This allows 3-D ultrasound to be used effectively in remote locations. These capabilities are illustrated by the MUSTPAC-1, a portable 3-D ultrasound telemedicine system recently developed for the U.S. military. Design, implementation, and field experiences with the MUSTPAC-1 are discussed, and extensions for use in space are proposed.
Technical Paper

3-Dimensional Lightning Observations Using a Time-of-Arrival Lightning Mapping System

2001-09-11
2001-01-2881
A lightning mapping system has been developed that locates the sources of VHF radiation from lightning discharges in three spatial dimensions and time. The system consists of several VHF receivers distributed over an area of about 100 km diameter. The system locates VHF radiation sources over the array with an accuracy of about 100 m. The system locates sources out to 250 km from the center of the array with reduced accuracy. The observations are found to reflect the basic charge structure of electrified storms.
Technical Paper

3D Image Metrology for Lean Manufacturing

1999-06-05
1999-01-2290
The need to improve quality while reducing cost in aerospace manufacturing is requiring new manufacturing methods and processes. Advanced technologies, such as 3D Image Metrology, offer great potential to lean manufacturing, if properly integrated into the production process. Over the last years 3D Image Metrology has developed a level of performance, which make it ideally suited for this purpose. These capabilities include the automatic in-process inspection of tools and parts before machining, machine control for highly accurate positioning during the machining operation, and in-process inspection during machining. This offers jig-less assembly, lower inventory, faster part throughput, and many more advantages.
Technical Paper

3D-PIV Measurement and Visualization of Streamlines Around a Standard SAE Vehicle Model

2011-04-12
2011-01-0161
In CFD (Computational Fluid Dynamics) verification of vehicle aerodynamics, detailed velocity measurements are required. The conventional 2D-PIV (Two Dimensional Particle Image Velocimetry) needs at least twice the number of operations to measure the three components of velocity ( u,v,w ), thus it is difficult to set up precise measurement positions. Furthermore, there are some areas where measurements are rendered impossible due to the relative position of the object and the optical system. That is why the acquisition of detailed velocity data around a vehicle has not yet been attained. In this study, a detailed velocity measurement was conducted using a 3D-PIV measurement system. The measurement target was a quarter scale SAE standard vehicle model. The wind tunnel system which was also designed for a quarter scale car model was utilized. It consisted of a moving belt and a boundary suction system.
Journal Article

3D-Printed Antenna Design Using Graphene Filament and Copper Tape for High-Tech Air Components

2022-11-25
Abstract Additive manufacturing (AM) technologies can produce lighter parts; reduce manual assembly processes; reduce the number of production steps; shorten the production cycle; significantly reduce material consumption; enable the production of prostheses, implants, and artificial organs; and produce end-user products since it is used in many sectors for many reasons; it has also started to be used widely, especially in the field of aerospace. In this study, polylactic acid (PLA) was preferred for the antenna substrate because it is environmentally friendly, easy to recycle, provides convenience in production design with a three-dimensional (3D) printer, and is less expensive compared to other available materials. Copper (Cu) tape and graphene filament were employed for the antenna patch component due to their benefits.
Journal Article

4H-SiC VJFET Based Normally-off Cascode Switches for 300°C Electronic Applications

2008-11-11
2008-01-2883
Vertical-Junction-Field-Effect-Transistors (VJFETs) are currently the most mature SiC devices for high power/temperature switching. High-voltage VJFETs are typically designed normally-on to ensure voltage control operation at high current-gain. However, to exploit the high voltage/temperature capabilities of VJFETs in a normally-off high-current voltage-controlled switch, high-voltage normally-on and low-voltage normally-off VJFETs were connected in the cascode configuration. In this paper, we review the high temperature DC characteristics of VJFETs and 1200 V normally-off cascode switches. The measured parameter shifts in the 25°C to 300°C temperature range are in excellent agreement with theory, confirming fabrication of robust SiC VJFETs and cascode switches.
Technical Paper

757/767 Flight Management System

1980-09-01
801169
The 757/767 Flight Management System provides the initial operational implementation of an integrated guidance, control and display equipments based upon digital technology for commercial transport airplanes. The applied equipments are based upon the new ARINC 700 series characteristics developed by the Industry over the past five years. These characteristics were developed on the basis of limited operational experience with selected elements of the system and upon R&D efforts within the Industry. The System features automatic/manual flight profiles for optimum economics, all weather landing including rollout guidance, electronic primary flight instruments based on color (shadow mask) CRTs, inertial attitude/velocity reference based upon laser gyros, improved caution/warning and other improved performance/functional features. The system also provides significant improvements in line and shop maintenance features.
Technical Paper

94 GHz MMW Imaging Radar System

1991-09-01
912208
The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna and digital signal processor, has an update rate of 10 times per second, 0.35° azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.
Technical Paper

A -183°C Cryogenic Freezer for the International Space Station

2003-07-07
2003-01-2525
In the course of CRYOSYSTEM phase B (development phase) financed by the European Space Agency, AIR LIQUIDE (France) and Astrium Space Infrastructure (Germany) have developed an optimized design of a −183°C freezer to be used on board the International Space Station for the freezing and storage of biological samples. The CRYOSYSTEM facility consists of the following main elements: - the CRYORACK, an outfitted standard payload rack (ISPR) accommodating up to three identical Vial Freezers - the Vial Freezer, a dewar vessel capable of fast and ultra-rapid freezing, and storing up to approximately 900 vials below −183°C; the dewar is cooled by a Stirling machine producing > 6 W at 90 K. The Vial Freezer is operational while accommodated in the CRYORACK or attached to the Life Science Glovebox (LSG). One CRYORACK will remain permanently on-orbit for several years while four Vial Freezers and two additional CRYORACKs support the cyclic upload/download of samples.
Technical Paper

A Brief Survey of the Experimental Methods Used for Wake Vortex Investigations

2007-09-17
2007-01-3788
Some of the methods used for experimental detection and examination of wake vortices are presented. The aim of the article is to provide the reader a brief overview of the available methods. The material is divided into two major sections, one dealing with methods used primarily in the laboratory, and the second part devoted to those used in field operations. Over one hundred articles are cited and briefly discussed.
Technical Paper

A Building for Testing European Rovers and Landers under Simulated Surface Conditions: Part 1 - Design and Phasing

2008-06-29
2008-01-2021
Europe has embarked on a new programme of space exploration involving the development of rover, lander and probe missions to visit planets, moons and near Earth objects (NEOs) throughout the Solar System. Rovers and landers will require testing under simulated planetary, and NEO conditions to ensure their ability to land on and traverse the alien surfaces. ESA has begun work on a building project that will provide an enclosed and controlled environment for testing rover and lander functions such as landing, mobility, navigation and soil sampling. The facility will first support the European ExoMars mission due for launch in 2013. This mission will deliver a robotic rover to the Martian surface. This paper, the first of several on the project, gives an overview of its design configuration and construction phasing. Future papers will cover its applications and operations.
Technical Paper

A Capillary Pump Loop Cooling System for the NICMOS Instrument

1998-07-13
981814
The Near Infrared Camera and Multi Object Spectrometer (NICMOS) was installed in the Hubble Space Telescope in February 1997. Shortly thereafter, the instrument experienced a thermal short in its solid nitrogen dewar system which will shorten its useful life significantly. A reverse Brayton cycle mechanical refrigerator will be installed during the third servicing mission (SM3) to provide cooling for the instrument, and thereby extend its life. A Capillary Pump Loop (CPL) and radiator system has been designed, built and tested to remove up to 500 watts of heat from the mechanical cooler and its electronics. This paper will describe the CPL system in detail and present the results of the extensive testing and qualification program.
Technical Paper

A Comparative Study Between Different Psychological Approaches During an ESA Space Simulation

1994-06-01
941358
The objectives are to compare different psychological methods used to assess the evolution of the interrelations inside the crew and the relationships between the crew and the outside in a sixty days isolation/confinement's simulation. After presenting each method, results are compared. The discussion try to point out if these methods are equivalent or if they are complementary. The specificity of each method is shown and conclusions try to associate some methods with specific scientific goals.
Technical Paper

A Comparative Study of Turbulence Models in Axisymmetric Nozzle Flow

1995-05-01
951440
Two turbulence models have been studied to determine which of the models should be used in further Computational Fluid Dynamics (CFD) research. A zero-equation turbulence model, Baldwin-Lomax (B-L), is easy to use, requires no history of the flow, and requires little in the way of additional computations or additional computer memory space [1]. A two-equation k-ε model, Yang-Shih (Y-S), is more difficult to implement, does require flow history, and requires many more computations and much more computer space; however, it is potentially more accurate than the B-L model [2]. Using both Navier-Stokes (NS) and Parabolized Navier-Stokes (PNS) solvers, the two models and their codes were validated against the testbed of the Wright Laboratory (WL) Mach 12 wind tunnel nozzle.
Journal Article

A Comparison of the Apollo and Early Orion Environmental Control, Life Support and Active Thermal Control System's Driving Requirements and System Mass

2008-06-29
2008-01-2081
The Orion Crew and Service Modules are often compared to the Apollo Command and Service Modules due to their similarity in basic mission objective: both were dedicated to getting a crew to lunar orbit and safely returning them to Earth. Both spacecraft rely on the environmental control, life support and active thermal control systems (ECLS/ATCS) for the basic functions of providing and maintaining a breathable atmosphere, supplying adequate amount of potable water and maintaining the crew and avionics equipment within certified thermal limits. This assessment will evaluate the driving requirements for both programs and highlight similarities and differences. Further, a short comparison of the two system architectures will be examined including a side by side assessment of some selected system's hardware mass.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
X