Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

100-kWe Lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion

1992-08-03
929446
An integration study was performed coupling an SP-100 reactor with either a Brayton or Stirling power conversion subsystem. A power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. Previous studies were used to select the power conversion optimum operating conditions (ratio of hot-side temperature to cold-side temperature). Results of the study indicated that either the Brayton or Stirling power conversion subsystems could be integrated with the SP-100 reactor for either a lunar or Mars surface power application.
Technical Paper

135 Days in Isolation and Confinement: The Hubes Simulation

1995-07-01
951512
The EUROMIR-95 flight was selected as model for the HUBES experiment: a similar duration (135 days), a similar crew (3 men), similar schedule organisation (8 hours work, 8 hours sleep, 8 hours off-duties), similar workload for the crew and the mission control (performance of scientific experiments), similar setup for communication and data processing, and similar layout of the MIR station, as the simulation was performed in the MIR simulator located at the Institute for BioMedical Problems (IBMP) in Moscow. The Scientific Programme of HUBES had been elaborated by integration of 31 experiments from more than 80 research proposals from Principal Investigators from Europe, USA and Russia, in domains of Physiology, Psychology, Operations and Technology.
Technical Paper

270-Vdc/Hybrid 115-Vac Electric Power Generating System Technology Demonstrator Evolution to a Dual-Channel, More Electric Aircraft Technology Development Testbed

1991-09-01
912183
Sundstrand has been investigating 270-Vdc/hybrid 115-Vac electrical power generating systems (EPGS) technology in preparation for meeting the electrical power generating system (EPGS) requirements for future aircraft (1). Systems such as the one being investigated are likely to be suitable for the More-Electric Aircraft (MEA) concepts presently under industry and military study. The present Sundstrand single-channel testbed is being further expanded to better understand the electrical system performance characteristics and power quality requirements of an MEA in which traditional mechanical subsystems are replaced by those of a “more-electric” nature. This paper presents the most recent Sundstrand 270-Vdc system transient performance data, and describes the modifications being made to the 270-Vdc/hybrid 115-Vac testbed.
Journal Article

4H-SiC VJFET Based Normally-off Cascode Switches for 300°C Electronic Applications

2008-11-11
2008-01-2883
Vertical-Junction-Field-Effect-Transistors (VJFETs) are currently the most mature SiC devices for high power/temperature switching. High-voltage VJFETs are typically designed normally-on to ensure voltage control operation at high current-gain. However, to exploit the high voltage/temperature capabilities of VJFETs in a normally-off high-current voltage-controlled switch, high-voltage normally-on and low-voltage normally-off VJFETs were connected in the cascode configuration. In this paper, we review the high temperature DC characteristics of VJFETs and 1200 V normally-off cascode switches. The measured parameter shifts in the 25°C to 300°C temperature range are in excellent agreement with theory, confirming fabrication of robust SiC VJFETs and cascode switches.
Technical Paper

757/767 Flight Management System

1980-09-01
801169
The 757/767 Flight Management System provides the initial operational implementation of an integrated guidance, control and display equipments based upon digital technology for commercial transport airplanes. The applied equipments are based upon the new ARINC 700 series characteristics developed by the Industry over the past five years. These characteristics were developed on the basis of limited operational experience with selected elements of the system and upon R&D efforts within the Industry. The System features automatic/manual flight profiles for optimum economics, all weather landing including rollout guidance, electronic primary flight instruments based on color (shadow mask) CRTs, inertial attitude/velocity reference based upon laser gyros, improved caution/warning and other improved performance/functional features. The system also provides significant improvements in line and shop maintenance features.
Technical Paper

A -183°C Cryogenic Freezer for the International Space Station

2003-07-07
2003-01-2525
In the course of CRYOSYSTEM phase B (development phase) financed by the European Space Agency, AIR LIQUIDE (France) and Astrium Space Infrastructure (Germany) have developed an optimized design of a −183°C freezer to be used on board the International Space Station for the freezing and storage of biological samples. The CRYOSYSTEM facility consists of the following main elements: - the CRYORACK, an outfitted standard payload rack (ISPR) accommodating up to three identical Vial Freezers - the Vial Freezer, a dewar vessel capable of fast and ultra-rapid freezing, and storing up to approximately 900 vials below −183°C; the dewar is cooled by a Stirling machine producing > 6 W at 90 K. The Vial Freezer is operational while accommodated in the CRYORACK or attached to the Life Science Glovebox (LSG). One CRYORACK will remain permanently on-orbit for several years while four Vial Freezers and two additional CRYORACKs support the cyclic upload/download of samples.
Technical Paper

A Bioreactor System for the Nitrogen Loop in an Engineered Closed/Controlled Ecosystem

1996-07-01
961506
As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed through the integration of human and plant modules in an ecological life support system. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it can be used as a nutrient for the plant module. A 3-step biological process for the conversion of nitrogenous waste (urea) to resource (nitrate) is proposed. Mathematical modeling was used to investigate the bioreactor system, with the goal of maximizing the ratio of performance to volume and energy requirements. Calculations show that separation of the two microbial conversions into two steps requires a smaller total reactor volume than combining them in a single bioreactor.
Technical Paper

A Brief Survey of the Experimental Methods Used for Wake Vortex Investigations

2007-09-17
2007-01-3788
Some of the methods used for experimental detection and examination of wake vortices are presented. The aim of the article is to provide the reader a brief overview of the available methods. The material is divided into two major sections, one dealing with methods used primarily in the laboratory, and the second part devoted to those used in field operations. Over one hundred articles are cited and briefly discussed.
Technical Paper

A Building for Testing European Rovers and Landers under Simulated Surface Conditions: Part 1 - Design and Phasing

2008-06-29
2008-01-2021
Europe has embarked on a new programme of space exploration involving the development of rover, lander and probe missions to visit planets, moons and near Earth objects (NEOs) throughout the Solar System. Rovers and landers will require testing under simulated planetary, and NEO conditions to ensure their ability to land on and traverse the alien surfaces. ESA has begun work on a building project that will provide an enclosed and controlled environment for testing rover and lander functions such as landing, mobility, navigation and soil sampling. The facility will first support the European ExoMars mission due for launch in 2013. This mission will deliver a robotic rover to the Martian surface. This paper, the first of several on the project, gives an overview of its design configuration and construction phasing. Future papers will cover its applications and operations.
Technical Paper

A Comparative Study Between Different Psychological Approaches During an ESA Space Simulation

1994-06-01
941358
The objectives are to compare different psychological methods used to assess the evolution of the interrelations inside the crew and the relationships between the crew and the outside in a sixty days isolation/confinement's simulation. After presenting each method, results are compared. The discussion try to point out if these methods are equivalent or if they are complementary. The specificity of each method is shown and conclusions try to associate some methods with specific scientific goals.
Technical Paper

A Comparative Study of Turbulence Models in Axisymmetric Nozzle Flow

1995-05-01
951440
Two turbulence models have been studied to determine which of the models should be used in further Computational Fluid Dynamics (CFD) research. A zero-equation turbulence model, Baldwin-Lomax (B-L), is easy to use, requires no history of the flow, and requires little in the way of additional computations or additional computer memory space [1]. A two-equation k-ε model, Yang-Shih (Y-S), is more difficult to implement, does require flow history, and requires many more computations and much more computer space; however, it is potentially more accurate than the B-L model [2]. Using both Navier-Stokes (NS) and Parabolized Navier-Stokes (PNS) solvers, the two models and their codes were validated against the testbed of the Wright Laboratory (WL) Mach 12 wind tunnel nozzle.
Technical Paper

A Comparison of Two Shuttle Launch and Entry Suits: Reach Envelope, Isokinetic Strength, and Treadmill Tests

1992-07-01
921154
The objective of this investigation was to measure and document the existence of any significant differences in physical performance under operational conditions between the Launch Entry Suit (LES) and the new Advanced Crew Escape Suit (ACES). The LES is a partial pressure suit currently worn by astronauts during the launch and entry phases of Shuttle missions. The ACES is a full pressure suit under consideration as a replacement for the LES. One prototype ACES has been fabricated and was used in this investigation. This report presents the results of three tests conducted with six subjects to allow a comparative evaluation of the two suits. The three tests included a reach envelope test, a strength test, and a treadmill test. The reach envelope test measured and compared the maximum hand displacements during horizontal and vertical reaches of both left and right arms in one-g conditions.
Journal Article

A Comparison of the Apollo and Early Orion Environmental Control, Life Support and Active Thermal Control System's Driving Requirements and System Mass

2008-06-29
2008-01-2081
The Orion Crew and Service Modules are often compared to the Apollo Command and Service Modules due to their similarity in basic mission objective: both were dedicated to getting a crew to lunar orbit and safely returning them to Earth. Both spacecraft rely on the environmental control, life support and active thermal control systems (ECLS/ATCS) for the basic functions of providing and maintaining a breathable atmosphere, supplying adequate amount of potable water and maintaining the crew and avionics equipment within certified thermal limits. This assessment will evaluate the driving requirements for both programs and highlight similarities and differences. Further, a short comparison of the two system architectures will be examined including a side by side assessment of some selected system's hardware mass.
Technical Paper

A Complex Simulation Model of Human Organism as a Link of the Space Vehicle Ecological and Technical System

1995-07-01
951531
This paper deals with the Complex Simulation Model of Human Organism (HOCSM) intended for various problems' solutions of the Manned Space Objects Ecological and Technical System (ETS) development. Among the fundamental problems of the ETS development requiring the HOCSM adaptation are: (a) forming the mass and energetic loads of spacecraft crew for the simulation of the ETS functions; (b) the investigation of environment effects on a human organism and its responses; (c) the analysis of interactions between the crew and the individual life support system or its functional blocks; (d) the decisions of design problems for development of the anti exposure and space suits. The HOCSM, under consideration, is based on the general theory of functional systems and includes formalistic descriptions of following human organism functional systems: a cardiovascular systems, an external respiration system, a thermoregulation system and a water-salt balance system.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Technical Paper

A Computer Aided Engineering Tool for ECLS Systems

1987-07-01
871423
This paper presents an overview of the Computer Aided Systems Engineering and Analysis (CASE/A)-ECLSS series which is designed as a generalised ECLSS design and analysis package. This system was developed under NASA MSEC contract NAS8-36407 to meet the Systems Analysis requirements of the Space Station ECLSS. The Space Station represents an order of magnitude increase in complexity over current Spacecraft technologies and will seriously tax current analysis techniques. This program is capable of simulating atmospheric revitalization systems, water recovery and management systems, and single phase active thermal control systems. The program evolved from both the G189A and the SINDA programs and shares the G189A architectural concepts. The designer/ analysis interface is graphics based and allows the designer to build a model by constructing a schematic of the system under consideration.
Technical Paper

A Computer Technique to Evaluate Routing of Fluid System Plumbing for Aircraft Engines

1967-02-01
670584
In the design of fluid systems plumbing for aircraft engines, the designer is continually challenged by the problem of component location and routing. In order to achieve accessibility and maintainability, and to avoid physical interferences, plumbing design is accomplished through extensive graphical projection and mockups. The solution to this problem must also satisfy tubing stress limits, resonant frequencies, bracket or clamping positions available and future space requirements. To facilitate and expedite this design procedure a digital computer technique has been developed which determines the clearances between tubing and other engine components. Though not a substitute for graphical projection, this program provides a means for accurate checking for interference. It also serves a valuable purpose in the storage of previous or alternate plumbing routing arrangements for comparison.
Technical Paper

A Concept for a Manned Artificial Gravity Research Ship

1992-07-01
921192
In the first half of the next century, Mankind will expand its sphere of existence to the Moon and space, and they will stand on Mars and study the other planets. Then, humans will inevitably be required to live for long periods, two years or more, in micro-gravity and/or low gravity environments. However, it is well known that such micro or low gravity environments adversely affect human physiology and psychology. The longer the period the greater such effects are and these can result in serious health problems. To improve living conditions in space by generating artificial gravity will be important to solving these problems.
Technical Paper

A Configurable Solid State Power Management and Distribution System

2002-10-29
2002-01-3210
Future vehicle power systems must achieve greater flexibility and reliability than those used in previous generations. New functions that enhance safety, such as arc detection and wiring integrity verification, are essential for new systems. Embedded autonomous control, and fault correction can be built into Fault Tolerant Processors that integrate into a vehicle Open System Architecture. This approach will provide status and fault detection information to maintenance interfaces and provide fault correction. Safety is enhanced by the prevention of dangerous restarts from crew and personnel. The embedded features allow for pre-flight mission configuration to setup systems before takeoff and on-board and off-board maintenance control. This enables operators to evaluate power system health and history to help reduce turn around time.
X