Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Indirect Occupancy Detection and Occupant Counting System Using Motion Sensors

2017-03-28
2017-01-1442
This paper proposes a low-cost but indirect method for occupancy detection and occupant counting purpose in current and future automotive systems. It can serve as either a way to determine the number of occupants riding inside a car or a way to complement the other devices in determining the occupancy. The proposed method is useful for various mobility applications including car rental, fleet management, taxi, car sharing, occupancy in autonomous vehicles, etc. It utilizes existing on-board motion sensor measurements, such as those used in the vehicle stability control function, together with door open and closed status. The vehicle’s motion signature in response to an occupant’s boarding and alighting is first extracted from the motion sensors that measure the responses of the vehicle body. Then the weights of the occupants are estimated by fitting the vehicle responses with a transient vehicle dynamics model.
Journal Article

An Integrated Validation Method for Nonlinear Multiple Curve Comparisons

2016-04-05
2016-01-0288
In automobile industry, computational models built to predict the performances of the prototype vehicles are on the rise. To assess the validity or predictive capability of the model for its intended usage, validation activities are conducted to compare computational model outputs with test measurements. Validation becomes difficult when dealing with dynamic systems which often involve multiple functional responses, and the complex characteristics need to be appropriately considered. Many promising data analysis tools and metrics were previously developed to handle data correlation and evaluate the errors in magnitude, phase shift, and shape. However, these methods show their limitations when dealing with nonlinear multivariate dynamic systems. In this paper, kernel function based projection is employed to transform the nonlinear data into linear space, followed by the regular principal component analysis (PCA) based data processing.
Technical Paper

Automatic Generation Method of Test Scenario for ADAS Based on Complexity

2017-09-23
2017-01-1992
ADAS must be tested thoroughly before they can be deployed for series production. Comparing with road and field test, bench test has been widely used owing to its advantages of less labor costs, more controllable scenarios, etc. However, there is no satisfied systematic approach to generate high-efficiency and full-coverage test scenarios automatically because of its integration of human, vehicle and traffic. Most of the test scenarios generated by the existing methods are either too simple or too few to be able to achieve full coverage of requirements. Besides, the cost is high when the ET method is used. To solve the aforementioned problems, an automatic test scenario generation method based on complexity for bench test is presented in this paper. Firstly, considering the fact that the device is easier to malfunction under complex cases, an index measuring the complexity of test case is proposed by using the method of AHP.
Technical Paper

Design and Production of Mg Wheels in China

2007-04-16
2007-01-1035
The high strength-weight ratio and high damping capability of Magnesium alloys implies significant potentials for improving fuel efficiency and vehicle performance with the use Mg wheels. In this paper, a brief review is given of the current state of art in Mg wheel production, followed by a summary of the mechanical and casting properties of Mg alloys. The difficulties that hinder the wide use of Mg wheels are discussed. The R&D activities in China in the fields of Mg wheel design and casting are described. The focus of this paper is on the design and the development of a new squeeze casting process that makes it feasible to produce high-quality Mg wheels with cost efficiency. Finally, the expected commercial use of Mg wheels in the near future in Chinese motorbikes is outlined.
Technical Paper

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

2019-04-02
2019-01-1224
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks.
X