Refine Your Search

Topic

Author

Search Results

Technical Paper

A Progress Report on Electromagnetic Activity of Motor Vehicle Manufacturer's Association

1973-02-01
730057
Starting in 1965 and continuing through 1972, the Radio Committee of the Motor Vehicles Manufacturers Association (MVMA) has been the coordinator of a number of electromagnetic research projects. These investigations have included extensive applications of the updated SAE Standard, Measurement of Electromagnetic Radiation From Motor Vehicles (20-1000 MHz)-SAE J551a. Furthermore, there were joint testing programs with the Electronic Industries Association which encompassed measuring degradation in the performance of Land Mobile Radio Service receivers resulting from varying levels of impulsive-type radiation from motor vehicles. In addition, efforts were expended in using statistical approaches for testing a number of hypotheses covering a conversion of impulsive vehicle noise data to the interference potential to Land Mobile receivers.
Technical Paper

Achieving Dent Resistance Improvements and Weight Reduction Through Stamping Process Optimization and Steel Substitution

1996-02-01
960025
Resistance to dents and dings, caused by plant handling and in-service use, is generally recognized as an important performance requirement for automotive outer body panels. This paper examines the dent resistance improvements that can be achieved by maximizing surface stretch, through adjustments to the press settings, and substitution of a higher strength steel grade. Initially, the stamping process was optimized using the steel supplied for production: a Ti/Nb-stabilized, ultra low carbon (ULC) grade. The stamping process was subsequently optimized with a Nb-stabilized, rephosphorized ULC steel, at various thicknesses. The formed panels were evaluated for percent surface stretch, percent thinning, in-panel yield strength after forming, and dent performance. The results showed that dent resistance can be significantly improved, even at a reduced steel thickness, thus demonstrating a potential for weight savings.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

Analysis of the Pelvis-Chest Interactions in Hybrid III

1995-02-01
950663
The interaction ILLEGIBLEf the chest of the Hybrid III dummy with the air bag restrILLEGIBLEt system during a crash is complex. Forces applied to one ILLEGIBLEmponent of the dummy can generate an unexpected response in a distal part. Motion, both linear and angular, of the pelvis during impact can create an enigmatic spike in the acceleration of the chest. Because significant changes in the chest acceleration response can affect the development of an airbag system, this pelvis-chest interaction is cause for concern. The factors that appear to affect the chest acceleration spike as a result of the pelvis-chest interaction are: the mass moment of inertia of the pelvis, the interaction of the pelvis with the femur, the characteristic of the lumbar spine, and the differential velocity of the pelvis with respect to the chest.
Technical Paper

Analytical Techniques for Designing Riding Quality Into Automotive Vehicles

1967-02-01
670021
This paper describes techniques that predict and analyze dynamic response of vehicles traversing random rough surfaces. Road irregularities are statistically classified by frequency and amplitude distribution. This classification determines the nature of random inputs to mathematical vehicle models and allows computer prediction of dynamic response of a simulated vehicle. Once inputs and models are defined, parametric analysis with output criteria specified statistically can be performed. This allows prediction of vehicle riding quality and evaluation of design concepts. Statistical analysis of accelerometer measurements on actual vehicles permits verification of the design process and meaningful comparison between vehicles.
Technical Paper

Analyzing Vibrations in an IC Engine Valve Train

1998-02-23
980570
This study analyzes the vibration characteristics of the valve train of a 2.0L SOHC Chrysler Corp. Neon engine over a range of operating speeds to investigate and demonstrate the advantages and limitations of various dynamic measurements such as displacement, velocity, and acceleration in this application. The valve train was tested in a motoring fixture at speeds of 500 to 3500 camshaft rpm. The advantages of analyzing both time and frequency domain measurements are described. Both frequency and order analysis were done on the data. The theoretical order spectra of cam displacement and acceleration were computed and compared to the experimental data. Deconvolution was used to uncover characteristic frequencies of vibration in the system. The theoretical cam acceleration spectrum was deconvolved from measured acceleration spectra to reveal the frequency response function of the follower system.
Technical Paper

Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop

1968-02-01
680093
Strain analysis of stampings is explained. The system is based on the strain distributions obtained from 0.2 in. inter-locking circle grid patterns etched on blanks. The strain distributions are related to a developed formability limit curve and the mechanical properties of the gridded blank. The evaluation of the graphic relation of the strains to the formability limit enables the press shop to determine what factors should be changed to produce stampings with less scrap and lower cost.
Technical Paper

Automated Test Request and Data Acquisition System for Vehicle Emission Testing

1997-02-24
970273
Due to new regulations, emissions development and compliance testing have become more complex. The amount of data acquired, the number of test types, and the variety of test conditions have increased greatly. Due to this increase, managing test information from request to analysis of results has become a critical factor. Also, automated test result presentation and test storage increases the value and quality of each test. This paper describes a computer system developed to cope with the increasing complexity of vehicle emission testing.
Technical Paper

Body Aerodynamics and Heater Air Flow

1966-02-01
660388
The heater air flow rate is a function not only of the heater itself but also of the size and location of the heater system air inlets, the car body air outlets, and the body surface pressure at these inlets and outlets. Favorable pressure conditions generally exist at the typical top cowl heater air inlet; however, the aerodynamics of each particular vehicle should be studied to confirm the existence of these conditions. Little consideration has been given to body air outlet pressure conditions since body leakage paths have generally served as adequate air outlets; but, as body leakage is reduced, specific air outlets must be considered and a knowledge of aerodynamics is essential to the achieving of appropriately sized and appropriately located air outlets.
Technical Paper

CHRYSLER TORSION-AIRE SUSPENSION Across The Board

1958-01-01
580031
IN 1951 Chrysler Corp. began working on a new torsion suspension. In this paper the authors describe details of the development and design of the suspension, now available on 1957 cars. The authors claim the Torsion-Aire suspension has the following advantages: reduced highspeed float, boulevard harshness, impact harshness, road noise, body roll, nose dive, and acceleration squat; better directional stability and cornering ability; fewer lubrication points; and a better balanced ride. The main feature of the front suspension is the use of torsion bars. One of the principal advantages of torsion bars is their weight: 10 lb as compared to 15.8 lb for a 1956 production coil spring.
Technical Paper

Can the k-ε Model Withstand the Challenges Posed by Complex Industrial Flows?

1997-04-08
971516
The purpose of this paper is to present numerical solution for three-dimensional flow about rotating short cylinders using the computer program AIRFLO3D. The flow Reynolds number was kept at 106 for all computations. The drag forces on the cylinder were obtained for different rotational speeds. Predictions were obtained for both an isolated cylinder and a cylinder on a moving ground. The standard k-ε model was employed to model the turbulence. Computed drag coefficients agreed well with the previous experimental data up to a spin ratio (=rω/V) of 1.5.
Technical Paper

Chrysler Collision Detection (C2D™) Bus Interface, Integrated Circuit User Manual

1988-02-01
880586
Some of Chrysler's 1988 model year vehicles contain a serial bus. This paper discusses its implementation and general usage. It describes a type of bus that was designed for smart modules to be able to cost effectively transfer data within an automotive environment. This paper is a sixty plus page users manual describing how to use both the Chrysler's C2D* bus and the C2D chip. This manual contains descriptions of the vehicle system, the information usage, the message formats, the hardware interfacing requirements, the bus speed, and the C2D chip functions. The SAE Multiplex Subcommittee is currently attempting to standardize this type of bus via SAE J1850. However, until this happens, Chrysler will continue to develop, improve, and use this bus, since it exists now! Even though this bus was designed for automotive usage, it has many other possible industry applications, especially within noisy environments. Thus, after understanding the bus, other industries may become interested.
Technical Paper

Chrysler Corporation's New V-8 Engine

1959-01-01
590013
THIS year the Chrysler Corp. has introduced a new V-8 engine designed to meet market conditions requiring larger displacements. Versions of the basic engine are available in several models of the Corporation's cars. This engine provides increased vehicle performance with excellent economy, durability, and quietness. Emphasis on minimum weight and production economy led to many novel design features which should interest the automotive engineer. The paper will include a review of the overall design considerations, as well as a description and discussion of the engine and its component parts.
Technical Paper

Chrysler Evaporation Control System The Vapor Saver for 1970

1970-02-01
700150
A system for controlling gasoline evaporation losses from 1970 model Chrysler Corp. cars and light trucks was developed, certified for sale in California, and put into production. Evaporation losses from both the carburetor and the fuel tank are conducted to the engine crankcase for storage while the engine is shut down. The vapors are removed from the crankcase and utilized in the combustion process during subsequent vehicle operation. Particularly interesting in this unique, no-moving parts system, are the reliability and durability, and the vapor-liquid separator “standpipe.”
Technical Paper

Concept Development Through Teamwork - Working for Quality, Cost, Weight and Investment

1991-02-01
910212
This paper presents a method for developing a product design and manufacturing process concept, before project final approval, which integrates several other methodologies and uses cross-functional teams. It is a method for completing a “paper” study which quickly considers many of the downstream steps of product development, which will be conducted in greater detail later. It results in a selection of the best design and process for the overall product application and supports this selection with sound numerical targets for quality, cost, weight, investment and process capability.
Technical Paper

Design Criteria for the Dent Resistance of Auto Body Panels

1974-02-01
740081
One solution to the problem of spiraling automotive weights is the substitution of thinner high strength steels or thicker aluminum alloy outer body panels. In doing so the dent resistance of these panels must not be sacrificed. This study investigates the dent resistance of doubly curved rectangular panels in various steels and aluminum alloys. Dent depth on the order of magnitude of the panel thickness was studied. An empirical equation is developed that relates dent resistance to the yield strengths, metal thickness, and panel geometry.
Technical Paper

Development Highlights and Unique Features of New Chrysler V-8 Engine

1951-01-01
510196
THE design and development of the new valve-in-head V-8 Chrysler engine of 7.5 compression ratio are described here. Among the features discussed by the authors are: the hemispherical combustion chamber, V-8 cylinder arrangement, double-breaker distributor, “thermal flywheel” on automatic choke, and exhaust-heated and water-jacketed throttle bodies. The hemispherical combustion chamber was adopted after it had displayed excellent volumetric and indicated thermal efficiencies, and an ability to maintain these high efficiencies in service. The high volumetric efficiency, for example, is considered to be due to such design features as valves not crowded together, nor surrounded closely by the combustion-chamber walls. They are thereby fully effective in the flow of the fuel-air mixture and the exhaust gases. The authors also present performance data for this engine, which, at full throttle, develops 180 hp at 4000 rpm and 312 ft-lb of torque at 2000 rpm.
Technical Paper

Developments in Dynamometer Control Methods

1972-02-01
720453
The application of automation to dynamometer testing of engines has led to the development of specialized circuits and techniques to compensate for limitations inherent within the electromechanical systems used to implement automation theory. Stable, quick response to a programmed speed change has been achieved for engine-automatic transmission testing by the use of a parallel feedback technique. Vehicle simulation using analog computer circuitry and road test data is used to calculate torque requirements from programmed acceleration-time and velocity-time curves. Similar circuitry is used to calculate engine-transmission output torque from dynamometer parameters.
Technical Paper

Energy and the Automobile - General Factors Affecting Vehicle Fuel Consumption

1973-02-01
730518
Since 1968, vehicle weight increases and emissions controls have reduced fuel economy substantially. Additional losses in economy and acceleration will be experienced through 1976. Recommendations are made to lessen the impact of the predicted losses. Factors influencing fuel economy and acceleration are examined for an intermediate car. Changes in engine efficiency and displacement, compression ratio, torque converter, transmission, axle ratio, aerodynamic drag, tires, accessories, vehicle weight, and emissions controls are examined. When practical, the effects of 10% changes are analyzed. Comparisons are also made with a subcompact and a luxury vehicle.
Technical Paper

Energy-Absorbing Polyurethane Foam to Improve Vehicle Crashworthiness

1995-02-01
950553
Federal legislation mandates that automotive OEMS provide occupant protection in collisions involving front and side impacts This legislation, which is to be phased-in over several years, covers not only passenger cars but also light-duty trucks and multipurpose passenger vehicles (MPVs) having a gross vehicle weigh rating (GVWR) of 8,500 lb (3,850 kg) or less. During a frontal impact, occupants within the vehicle undergo rapid changes in velocity. This is primarily due to rapid vehicle deceleration caused by the rigid nature of the vehicle's metal frame components and body assembly. Many of today's vehicles incorporate deformable, energy-absorbing (EA) structures within the vehicle structure to manage the collision energy and slow the deceleration which in turn can lower the occupant velocity relative to the vehicle. Occupant velocities can be higher in light-duty trucks and MPVs having a full-frame structure resulting in increased demands on the supplemental restraint system (SRS).
X