Refine Your Search

Topic

Search Results

Technical Paper

A New Composite Drive Cycle for Heavy-Duty Hybrid Electric Class 4-6 Vehicles

2004-03-08
2004-01-1052
This paper presents a new composite drive cycle used to evaluate and test the performance of Class 4-6 heavy-duty hybrid electric vehicles (HEVs). The new cycle is being used in the ongoing Advanced Heavy Hybrid Propulsion Systems (AHHPS) Program, sponsored by the U.S. Department of Energy. The goal was to select a cycle that is acceptable to all involved parties, has an achievable speed-time trace for target applications, represents the typical driving pattern of these applications, and is practical for testing and state-of-charge correction. These criteria were applied to numerous element and composite cycles. Ultimately, a new composite cycle was developed and selected-the Combined International Local and Commuter Cycle (CILCC). Various activities conducted under the AHHPS Program are based on this cycle, including energy auditing, modeling and simulation, system optimization, and vehicle testing.
Technical Paper

A Reduced Order Model for Prediction of the Noise Radiated by a High-Speed EV Transmission using Statistical Energy Analysis

2023-05-08
2023-01-1113
The transmission is an integral part of the driveline in an automotive vehicle. Global vehicle pass-by noise regulations are becoming more stringent and transmissions are expected to be very quiet. Typically for an automotive system, engine is the most dominant noise source and transmissions have been considered a secondary noise source but as the trend is shifting towards more electric vehicles where engine noise is absent and overall vehicle is becoming quieter, the transmission can be more of a significant noise contributor. Gear whine is the major concern for sound radiation from the transmission. The gear whine simulation and acoustic radiation analysis of the transmission using traditional methods (FEM and BEM) is a crucial but very time-consuming part of the product development cycle. On top of that, electric vehicle transmissions operate at higher RPM which in turn increases the excitation frequency arising from the gear whine phenomenon.
Technical Paper

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck

2003-11-10
2003-01-3369
The power management control system development and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design procedure adopted is a model-based approach, and is based on the dynamic programming technique. A vehicle model is first developed, and the optimal control actions to maximize fuel economy are then obtained by the dynamic programming method. A near-optimal control strategy is subsequently extracted and implemented using a rapid-prototyping control development system, which provides a convenient environment to adjust the control algorithms and accommodate various I/O configurations. Dynamometer-testing results confirm that the proposed algorithm helps the prototype hybrid truck to achieve a 45% fuel economy improvement on the benchmark (non-hybrid) vehicle. It also compares favorably to a conventional rule-based control method, which only achieves a 31% fuel economy improvement on the same hybrid vehicle.
Technical Paper

Downspeeding and Supercharging a Diesel Passenger Car for Increased Fuel Economy

2012-04-16
2012-01-0704
The effects of downspeeding and supercharging a passenger car diesel engine were studied through laboratory investigation and vehicle simulation. Changes in the engine operating range, transmission gearing, and shift schedule resulted in improved fuel consumption relative to the baseline turbocharged vehicle while maintaining performance and drivability metrics. A shift schedule optimization technique resulted in fuel economy gains of up to 12% along with a corresponding reduction in transmission shift frequency of up to 55% relative to the baseline turbocharged configuration. First gear acceleration, top gear passing, and 0-60 mph acceleration of the baseline turbocharged vehicle were retained for the downsped supercharged configuration.
Technical Paper

EV System Modelling and Co-Simulation with Integrated HVAC and Auxiliary Models

2021-09-22
2021-26-0172
The current simulation models of EV and ICE Vehicles are well known in industry for their use in estimating the fuel economy or Range benefits because of controller calibrations and component sizing. However, there is a gap in understanding the behavior of accessories such as HVAC, power steering and other such auxiliary loads and the energy losses associated with them. Impact of thermal behavior of electronics on vehicle range also needs to be studied in detail. These kinds of studies help OEM and tier 1 manufactures in improving their design concepts significantly with minimum cost and development time. Hence, the focus of this study is on building simulation models of thermal, electrical, traction and control circuits of a typical electric vehicle. These models are then integrated, and analysis is performed to understand vehicle system level performance metrics.
Technical Paper

Effect of Intake Valve Profile Modulation on Passenger Car Fuel Consumption

2018-04-03
2018-01-0379
Variable valve actuation is a focus to improve fuel efficiency for passenger car engines. Various means to implement early and late intake valve closing (E/LIVC) at lower load operating conditions is investigated. The study uses GT Power to simulate on E/LIVC on a 2.5 L gasoline engine, in-line four cylinder, four valve per cylinder engine to evaluate different ways to achieve Atkinson cycle performance. EIVC and LIVC are proven methods to reduce the compression-to-expansion ratio of the engine at part load and medium load operation. Among the LIVC strategies, two non-traditional intake valve lift profiles are investigated to understand their impact on reduction of fuel consumption at low engine loads. Both the non-traditional lift profiles retain the same maximum lift as a normal intake valve profile (Otto-cycle) unlike a traditional LIVC profile (Atkinson cycle) which needs higher maximum lift.
Technical Paper

Fast Diesel Aftertreatment Heat-up Using CDA and an Electrical Heater

2021-04-06
2021-01-0211
Commercial vehicles require fast aftertreatment heat-up in order to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations. Today’s diesel aftertreatment systems require on the order of 10 minutes to heat up during a cold FTP cycle. The focus of this paper is to heat up the aftertreatment system as quickly as possible during cold starts and maintain a high temperature during low load, while minimizing fuel consumption. A system solution is demonstrated using a heavy-duty diesel engine with an end-of-life aged aftertreatment system targeted for 2027 emission levels using various levels of controls. The baseline layer of controls includes cylinder deactivation to raise the exhaust temperature more than 100° C in combination with elevated idle speed to increase the mass flowrate through the aftertreatment system. The combination yields higher exhaust enthalpy through the aftertreatment system.
Technical Paper

Fatigue Analysis Methodology for Predicting Engine Valve Life

2003-03-03
2003-01-0726
Using FEM (Finite Element Method) and other analytical approaches, a systematic methodology was developed to predict an engine valve's fatigue life. In this study, a steel (SAE 21-2N) exhaust valve on an engine with a type 2 valve train configuration was used as a test case. Temperature and stress/strain responses of each major event phase of the engine cycle were analytically simulated. CFD models were developed to simulate the exhaust gas flow to generate boundary conditions for a thermal model of the valve. FEM simulations accounted for thermal loads, temperature dependent material properties, thermal stresses, closing impact stresses and combustion load stresses. An estimated fatigue life was calculated using Miner's rule of damage accumulation in conjunction with the Modified Goodman approach for fluctuating stresses. Predicted life results correlated very well with empirical tests.
Technical Paper

Fatigue Life Assessment on an Automotive Engine Exhaust Valve

2006-04-03
2006-01-0977
This paper presents the fatigue life assessment work on an engine exhaust valve subject to specified durability test cycles. Using valve stress (or strain) data from finite element methods, material fatigue data, and fatigue prediction models (i.e. SN approach and εN approach based on multi-axial Brown-Miller critical plane method), the valve life estimates were obtained and compared with the observed test data, which were in reasonable agreement. In addition, crack growth approach was used and valve crack propagation life including early stage growth was computed. Finally, a general discussion on three life estimates (i.e. fatigue total life, strain-life and crack growth life) was provided with their governing equation, supported by three real cases.
Technical Paper

Gear Design for Low Whine Noise in a Supercharger Application

2007-05-15
2007-01-2293
Supercharger gear whine noise has been a NVH concern for many years, especially around idle rpm. The engine masking noise is very low at idle and the supercharger is sensitive to transmitted gear whine noise from the timing gears. The low loads and desire to use spur gears for ease in timing the rotors have caused the need to make very accurate profiles for minimizing gear whine noise. Over the past several years there has been an effort to better understand gear whine noise source and transmission path. Based on understanding the shaft bending mode frequencies and better gear design optimization tools, the gear design was modified to increase the number of teeth in order to move out of the frequency range of the shaft bending modes at idle speed and to lower the transmission error of the gear design through optimization using the RMC (Run Many Cases) software from the OSU gear laboratory.
Technical Paper

Gear Transmission Error Metric for Use with Gear Inspection Machine

2003-05-05
2003-01-1663
The spur timing gears in Eaton superchargers operate at low torque loads and the supercharger system is especially sensitive to gear whine noise created by minute differences in the spur gear tooth profile quality. This has necessitated the grinding of very high quality profiles on high-contact-ratio spur gears. The manufacturing operation has used subjective evaluation of profile and lead measurements to qualify grinder diamonds and audit gear quality related to noise. They have also relied on supercharger end-of-line-testers to provide a direct measurement of gear noise as the primary quality feedback to the gear manufacturing process. Since the difference in the inspection plots of very high quality profiles is difficult to determine subjectively, the inspection process assessments have been difficult to correlate to the resultant gear noise measurements.
Technical Paper

Hydraulic Hybrid Vehicle Energy Management System

2009-06-15
2009-01-1772
Eaton has developed a prototype hydraulic hybrid vehicle energy management system that substantially improves fuel economy and reduces harmful emissions. The system was developed cooperatively with the U.S. Environmental Protection Agency (EPA), Navistar Inc., and the U.S. Army. The system has demonstrated fuel economy improvements in real world use of up to 50 percent while simultaneously reducing carbon emissions by up to 30 percent. The first real world application of the technology will be in parcel delivery vehicles owned by United Parcel Service (UPS). The hybrid vehicle energy management system components will be described and principles of operation explained. Major properties of the system will be examined and it will be shown why the hydraulic hybrid system is well suited for the parcel delivery vehicle application. Several secondary beneficial properties of the system will also be discussed.
Technical Paper

Hydraulic Hybrid Vehicle Energy Management System

2009-10-06
2009-01-2834
Eaton has developed a prototype hydraulic hybrid vehicle energy management system that substantially improves fuel economy and reduces harmful emissions. The system was developed cooperatively with the U.S. Environmental Protection Agency (EPA), Navistar Inc., and the U.S. Army. The system has demonstrated fuel economy improvements in real world use of up to 50 percent while simultaneously reducing carbon emissions by up to 30 percent. The first real world application of the technology will be in parcel delivery vehicles owned by United Parcel Service (UPS). The hybrid vehicle energy management system components will be described and principles of operation explained. Major properties of the system will be examined and it will be shown why the hydraulic hybrid system is well suited for the parcel delivery vehicle application. Several secondary beneficial properties of the system will also be discussed.
Technical Paper

Low-Height Differential Concepts for EVs

2018-04-03
2018-01-1294
Compared to the internal-combustion-engine (ICE) vehicles on the road today, Electric Vehicles (EV) deliver more torque to vehicle wheels, and require smaller driveline packaging envelopes. Current differentials use asymmetrical ring gears with differential housings that are roughly a third of the tire outside diameter. New differential architecture concepts are shown here to deliver more torque to the wheels, while decreasing the height of the differential as much as fourfold. Most EV’s are driven by one or more torsion motors, delivering torque to the left side and the right side of the EV’s at different speeds during a vehicle turn, or a wheel “spinout.” At low speeds, the EV motors deliver more torque to the wheels than comparably sized ICE vehicles, so EV differentials must be built stronger and stiffer to manage the distribution of available drive torque.
Technical Paper

Nonlinear Modeling of an Electromagnetic Valve Actuator

2006-04-03
2006-01-0043
This paper presents the modeling of an Electromagnetic Valve Actuator (EMV). A nonlinear model is formulated and presented that takes into account secondary nonlinearities like hysteresis, saturation, bounce and mutual inductance. The uniqueness of the model is contained in the method used in modeling hysteresis, saturation and mutual inductance. Theoretical and experimental methods for identifying parameters of the model are presented. The nonlinear model is experimentally validated. Simulation and experimental results are presented for an EMV designed and built in our laboratory. The experimental results show that sensorless estimation could be a possible solution for position control.
Technical Paper

On-board Measurements of City Buses with Hybrid Electric Powertrain, Conventional Diesel and LPG Engines

2009-11-02
2009-01-2719
On-board measurements of fuel consumption and vehicle exhaust emissions of NOx, HC, CO, CO2, and PM are being conducted for three types of commercially available city buses in Guangzhou, China. The selected vehicles for this test include a diesel bus with Eaton hybrid electric powertrain, a conventional diesel bus with automated mechanical transmission (AMT), and a LPG powered city bus with manual transmission (MT). All of the tested vehicles were instrumented with on-board measurements. Horiba OBS-2200 was used for measuring NOx, HC, and CO emissions; ELPI (Electrical Low Pressure Impactor) was used for PM measurement. The vehicles were tested at Hainan National Proving Ground in southern China. Test data of fuel consumption and exhaust emissions were analyzed. The city bus with Eaton hybrid electric powertrain demonstrated more than 27% fuel consumption reduction over the conventional diesel powered bus, and over 68% over the LPG bus.
Technical Paper

Preliminary Numerical Analysis of Valve Fatigue in a Checkball Pump for Driveline Applications

2010-10-05
2010-01-2008
Recent studies have shown that hydraulic hybrid drivelines can significantly improve fuel savings for medium weight vehicles on stop-start drive cycles. In a series hydraulic hybrid (SHH) architecture, the conventional mechanical driveline is replaced with a hydraulic driveline that decouples vehicle speed from engine speed. In an effort to increase the design space, this paper explores the use of a fixed displacement checkball piston pump in an SHH driveline. This paper identifies the potential life-limiting components of a fixed displacement checkball piston pump and examines the likelihood of surface fatigue in the check valves themselves. Numerical analysis in ABAQUS software suggests that under worst case operating conditions, cyclic pressure loading will result in low-cycle plastic deformation of check valve surfaces.
Technical Paper

Quantification of Diesel Engine Vibration Using Cylinder Deactivation for Exhaust Temperature Management and Recipe for Implementation in Commercial Vehicles

2018-04-03
2018-01-1284
Commercial vehicles require continual improvements in order to meet fuel emission standards, improve diesel aftertreatment system performance and optimize vehicle fuel economy. Aftertreatment systems, used to remove engine NOx, are temperature dependent. Variable valve actuation in the form of cylinder deactivation (CDA) has been shown to manage exhaust temperatures to the aftertreatment system during low load operation (i.e., under 3-4 bar BMEP). During cylinder deactivation mode, a diesel engine can have higher vibration levels when compared to normal six cylinder operation. The viability of CDA needs to be implemented in a way to manage noise, vibration and harshness (NVH) within acceptable ranges for today’s commercial vehicles and drivelines. A heavy duty diesel engine (inline 6 cylinder) was instrumented to collect vibration data in a dynamometer test cell.
Technical Paper

Simulation of Crimping Process for Electrical Contacts to Ensure Structural Integrity of Crimped Joint under Static Loads

2024-01-16
2024-26-0291
The use of electrical contacts in aerospace applications is crucial, particularly in connectors that transmit signal and power. Crimping is a widely preferred method for joining electrical contacts, as it provides a durable connection and can be easily formed. This process involves applying mechanical load to the contact, inducing permanent deformation in the barrel and wire to create a reliable joint with sufficient wire retention force. This study utilizes commercially available Abaqus software to simulate the crimping process using an explicit solver. The methodology developed for this study correlates FEA and testing for critical quality parameters such as structural integrity, mechanical strength, and joint filling percentage. A four-indenter crimping tool CAD model is utilized to form the permanent joint at the barrel-wire contact interfaces, with displacement boundary conditions applied to the jaws of the tool in accordance with MIL-C-22520/1C standard.
Technical Paper

Simulation of an Engine Valve Stress/Strain Response During a Closing Event

2003-03-03
2003-01-0727
Using an implicit transient FEA models of an intake engine valve, the dynamic stress/strain response of a valve closing (impact) on the valve seat was simulated. Key dynamic events during the closing process were identified and their corresponding physics accounted for in the model including: valve seat contact, valve tilt, rocker arm separation, material properties, shock wave and stem seal damping. Empirical tests were conducted to characterize the stem seal damping as a function of valve stem velocity. In addition, a simplified dynamics equation approach was developed. The results were successfully correlated to recorded strain gauge data.
X