Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Journal Article

A New Approach for Modeling Cycle-to-Cycle Variations within the Framework of a Real Working-Process Simulation

2013-04-08
2013-01-1315
For a reliable and accurate simulation of SI engines reproduction of their operation limits (misfiring and knock limit) and in this context the knowledge of cyclic combustion variations and their influence on knock simulation are mandatory. For this purpose in this paper a real working-process simulation approach for the ability to predict cycle-to-cycle variations (ccv) of gasoline engines is proposed. An extensive measurement data base of four different test engines applying various operation strategies was provided in order to gain a better understanding of the physical background of the cyclic variations. So the ccv initiated by dilution strategies (internal EGR, lean operation), the ccv at full load and at the knock limit could be investigated in detail. Finally, the model was validated on the basis of three further engines which were not part of the actual development process.
Technical Paper

A Phenomenological Carbon Monoxide Model for Diesel Engines

2021-04-06
2021-01-0375
Intensified emission regulations as well as consumption demands lead to an increasing significance of carbon monoxide (CO) emissions for diesel engines. On the one hand, the quantity of CO raw emissions is important for emission predictions as well as for the exhaust gas after treatment. On the other hand, CO emissions are also important for predicting combustion efficiency and thus fuel consumption, since a part of unreleased chemical energy of the fuel is still bound in the CO molecules. Due to these reasons, a simulation model for predicting CO raw emissions was developed for diesel engines based on a phenomenological two-zone model. The CO model takes three main sources of CO emissions of diesel engines into account: Firstly, it contains a sub model that describes CO from local understoichiometric areas. Secondly, CO emissions from overmixed regions are considered.
Technical Paper

A Phenomenological Unburned Hydrocarbon Model for Diesel Engines

2020-09-15
2020-01-2006
Intensified emission regulations as well as consumption demands lead to an increasing significance of unburned hydrocarbon (UHC) emissions for diesel engines. On the one hand, the quantity of hydrocarbon (HC) raw emissions is important for emission predictions as well as for the exhaust after treatment. On the other hand, HC emissions are also important for predicting combustion efficiency and thus fuel consumption, since a part of unreleased chemical energy of the fuel is still bound in the HC molecules. Due to these reasons, a simulation model for predicting HC raw emissions was developed for diesel engines based on a phenomenological two-zone model. The HC model takes three main sources of HC emissions of diesel engines into account: Firstly, it contains a sub-model that describes the fuel dribble out of the injector after the end of injection. Secondly, HC emissions from cold peripheral zones near cylinder walls are determined in another sub-model.
Technical Paper

A Simulative Study for Post Oxidation During Scavenging on Turbo Charged SI Engines

2018-04-03
2018-01-0853
Fulfilling exhaust emissions regulations and meet customer performance needs mainly drive the current engine development. Turbocharging system plays a key role for that. Currently turbocharging should provide highest engine power density at high engine speed by also allowing a very responsive performance at low end. This represents a trade-off in turbocharger development. A large scaled turbine allows having moderate exhaust gas back pressure for peak power region, but leading to loss of torque in low engine speed. In the last years of engine development scavenging helped to get away a bit from this trade-off as it increases the turbine mass flow and also reduces cylinder internal residual gas at low engine speed. The mostly in-use lean strategy runs air fuel ratios of closed to stoichiometric mixture in cylinder and global (pre catalyst) of λ = 1.05 to l = 1.3. This will be out of the narrow air fuel ratio band of λ = 1 to ensure NOx conversion in the 3-way-catalyst.
Technical Paper

An Operating Strategy Approach for Serial/Parallel Hybrid Electric Vehicles

2022-06-14
2022-37-0016
In this paper, a serial/parallel hybrid electric vehicle with a 17 kWh battery and 400 V voltage level is simulated. The vehicle is a C-segment vehicle, which has optimized driving resistances. It also has an external recharge possibility, which enables fully electric driving. The vehicle uses an Otto-engine concept as well as two electric motors. One motor is a permanent magnet synchronous motor and can be used as traction motor or generator, the other one is an induction motor used as main traction motor for the vehicle. The vehicle uses a 2-speed gearbox, where the electric motors are mounted in P2-configuration. To reach optimal results for the fuel consumption, an operating strategy based on the Equivalent Consumption Minimization Strategy (ECMS) is introduced and implemented in the vehicle simulation.
Technical Paper

Analysis of the Applicability of Water Injection in Combination with an eFuel for Knock Mitigation and Improved Engine Efficiency

2022-06-14
2022-37-0019
The development of future gasoline engines is dominated by the study of new technologies aimed at reducing the engine negative environmental impact and increase its thermal efficiency. One common trend is to develop smaller engines able to operate in stoichiometric conditions across the whole engine map for better efficiency, lower fuel consumption, and optimal conversion rate of the three-way catalyst (TWC). Water injection is one promising technique, as it significantly reduces the engine knock tendency and avoids fuel enrichment for exhaust temperature mitigation at high power operation. With the focus on reducing the carbon footprint of the automotive sector, another vital topic of research is the investigation of new alternative CO2-neutral fuels or so-called eFuels. Several studies have already shown how these new synthetic fuels can be produced by exploiting renewable energy sources and can significantly reduce engine emissions.
Technical Paper

Development Approach for the Investigation of Homogeneous Charge Compression Ignition in a Free-Piston Engine

2013-09-08
2013-24-0047
In this paper the development approach and the results of numerical and experimental investigations on homogeneous charge compression ignition in a free piston engine are presented. The Free Piston Linear Generator (FPLG) is a new type of internal combustion engine designed for the application in a hybrid electric vehicle. The highly integrated system consists of a two-stroke combustion unit, a linear generator, and a mass-variable gas spring. These three subsystems are arranged longitudinally in a double piston configuration. The system oscillates linearly between the combustion chamber and the gas spring, while electrical energy is extracted by the centrally arranged linear generator. The mass-variable gas spring is used as intermediate energy storage between the downstroke and upstroke. Due to this arrangement piston stroke and compression ratio are no longer determined by a mechanical system.
Technical Paper

Development support for the design of distributed control systems in a road vehicle

2000-06-12
2000-05-0117
The development process of electronic control units (ECU) is increasingly supported by different tools. The target-specific code-generation for single micro-controllers becomes a standard technology. Thus a continuous tool support during the whole development cycle is possible. This extends from the specification of the functionality to the implementation of the software on the controller. The next generation of tool support is not only focused on single micro-controllers it also supports the design of systems consisting of different controllers connected via various communication entities. Thus the goal of the tool support is the automatic code-generation for such distributed embedded real-time systems including support of different communication buses (e.g., Controller Area Network CAN, Time Triggered Protocol TTP) and different processor targets.
Technical Paper

Efficiency Potential of SI Engines with Gasoline and Methanol: A 0D/1D Investigation

2021-04-06
2021-01-0385
To meet the requirements of strict CO2 emission regulations in the future, internal combustion engines must have excellent efficiencies for a wide operating range. In order to achieve this goal, various technologies must be applied. Additionally, fuels other than gasoline should also be considered. In order to investigate the potential of the efficiency improvement, a SI engine was designed and optimized using 0D/1D methods. Some of the advanced features of this engine model include: High stroke-to-bore-ratio, variable valve timings with Miller cycle, EGR, cylinder deactivation, high turbulence concept, variable compression ratio and extreme downsizing. The fuel of choice was gasoline. With the proper application of technologies, the fuel consumption at the most relevant operating window could be decreased by approximately 10% in comparison to a state-of-the-art spark-ignited direct-injection four-cylinder passenger car engine.
Technical Paper

Evaluation of Engine-Related Restrictions for the Global Efficiency by Using a Rankine Cycle-Based Waste Heat Recovery System on Heavy Duty Truck by Means of 1D-Simulation

2018-04-03
2018-01-1451
As a promising concept to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, organic Rankine cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from industry in recent years. The greatest achievable global efficiency may be, however, restricted by the engine. On one hand, engine operating conditions have direct impact on the temperature and the mass flow of exhaust gas, which is the waste heat source, on the other hand, the engine cooling system limits the heat rejection from the condenser of the WHR system. This paper aims to evaluate the impacts of the varied engine applications considering the effects of the WHR system on the global efficiency and engine emissions.
Technical Paper

Improvement of Post-Oxidation for Low-Emission Engines through 3D-CFD Virtual Development

2023-08-28
2023-24-0107
There is a growing need for low-emissions concepts due to stricter emission regulations, more stringent homologation cycles, and the possibility of a ban on new engines by 2035. Of particular concern are the conditions during a cold start, when the Three-Way Catalyst is not yet heated to its light-off temperature. During this period, the catalyst remains inactive, thereby failing to convert pollutants. Reducing the time needed to reach this temperature is crucial to comply with the more stringent emissions standards. The post oxidation by means of secondary air injection, illustrated in this work, is a possible solution to reduce the time needed to reach the above-mentioned temperature. The strategy consists of injecting air into the exhaust manifold via secondary air injectors to oxidize unburned fuel that comes from a rich combustion within the cylinder.
Technical Paper

Investigation and 1D Modelling Approach on Scavenging Air Post-Oxidation inside the Exhaust Manifold of a DISI Engine

2021-04-06
2021-01-0599
The introduction of real driving emission measurements increases the need of improved transient engine behavior while keeping the emissions to a minimum. A possible way of enhancing the transient engine behavior is the targeted usage of scavenging. Scavenging is realized by an inlet- and exhaust-valve overlap. Fresh scavenging air flows directly from intake manifold through the cylinder into the exhaust manifold. Therefore, the mass flow at the turbine increases and causes a reduced turbo lag, which results in a more dynamic engine behavior. The unburned oxygen causes a decrease of the three-way catalyst (TWC) conversion rate. To keep the TWC operation close to stoichiometry, a rich combustion is performed. The rich combustion products (most notably carbon monoxide) mix in the exhaust manifold and react with oxygen so that the conversion rate of the TWC is ensured.
Technical Paper

Numerical Investigation on the Cause-and-Effect Chain for Cycle-to-Cycle Variation of Direct-Injection Spark-Ignition Engine

2023-08-28
2023-24-0035
Due to increasingly strict emission regulations, lean combustion concept has become an essential direction of internal combustion engine development to reduce engine emissions. However, lean combustion will lead high combustion instability and unpredictive engine emissions. The combustion instability is represented as the high cycle-to-cycle variation. Therefore, understanding the mechanism of cycle-to-cycle variation is crucial for the internal combustion engine design. This paper investigates the cause-and-effect chain of cycle-to-cycle variation of spark ignition engines using 3D CFD simulations with CONVERGE v3.0. The cyclic variations were simulated through Large Eddy Simulations, and the simulations based on Reynolds-averaged Navier–Stokes were used as supplements. The analysis focuses on two key factors that determine the combustion process: the turbulent intensity and the homogeneity of the air/fuel mixture.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Technical Paper

Potential of Pre-Turbo Exhaust Gas Aftertreatment Systems in Electrified Powertrains

2021-04-06
2021-01-0579
In order to operate effectively, exhaust gas aftertreatment (EAT) systems require a certain temperature level. The trend towards higher grades of hybridisation causes longer switch-off phases of the internal combustion engine (ICE) during which the EAT components cool down. Additionally, efficiency enhancements of the ICE result in lower exhaust gas temperatures. In combination with further strengthening of the legal requirements regarding tailpipe emissions, new approaches are desired to ensure reliable emission reductions under all conditions. One possibility to achieve a faster warm-up of the EAT system is to place it upstream of the turbine, where temperatures are higher. Although, the extra thermal inertia and larger volume upstream of the turbine delay the throttle response, even a light hybridisation is sufficient for compensating the dynamic loss.
Technical Paper

Predicting the Influence of Charge Air Temperature Reduction on Engine Efficiency, CCV and NOx-Emissions of a Large Gas Engine Using a SI Burn Rate Model

2020-04-14
2020-01-0575
In order to meet increasingly stringent exhaust emission regulations, new engine concepts need to be developed. Lean combustion systems for stationary running large gas engines can reduce raw NOx-emissions to a very low level and enable the compliance with the exhaust emission standards without using a cost-intensive SCR-aftertreatment system. Experimental investigations in the past have already confirmed that a strong reduction of the charge air temperature even below ambient conditions by using an absorption chiller can significantly reduce NOx emissions. However, test bench operation of large gas engines is costly and time-consuming. To increase the efficiency of the engine development process, the possibility to use 0D/1D engine simulation prior to test bench studies of new concepts is investigated using the example of low temperature charge air cooling. In this context, a reliable prediction of engine efficiency and NOx-emissions is important.
Technical Paper

Reaction Kinetics Calculations and Modeling of the Laminar Flame Speeds of Gasoline Fuels

2018-04-03
2018-01-0857
In the quasi-dimensional modeling of the spark-ignition combustion process, the burn rate calculation depends, among other influences, on the laminar flame speed. Commonly used models of laminar flame speeds are usually developed on the basis of measurement data limited to boundary conditions outside of the engine operation range. This limitation is caused by flame instabilities and forces flame speed models to be extrapolated for the application in combustion process simulation. However, for the investigation of, for example, lean burn engine concepts, reliable flame speed values are needed to improve the quality and predictive ability of burn rate models. For this purpose, a reference fuel for gasoline is defined to perform reaction kinetics calculations of laminar flame speeds for a wide range of boundary conditions.
Journal Article

The Recent Upgrade of the Model Scale Wind Tunnel of University of Stuttgart

2017-03-28
2017-01-1527
After being in operation since 1989, the 25% / 20% model scale wind tunnel of University of Stuttgart received its second major upgrade in 2016. In a first upgrade in 2001, a rolling road with a 5 belt system from MTS was installed. This system includes a steel center belt to simulate the road underneath the vehicle and four FKFS designed rubber belts for wheel rotation. The recent upgrade now enables the wind tunnel to be used not only for standard, steady state aerodynamic measurements but also for measurements of unsteady aerodynamic effects. This enables the use of the FKFS swing system as a standard measurement technique. Therefore, the former balance was replaced by a balance manufactured by AND with a high Eigenfrequency and the ability to sample the measurement data at up to 1000 Hz. The second large part of the upgrade was the replacement of the control system. With the new Wind Tunnel Control System (WCTS), control system.
X