Refine Your Search

Topic

Author

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

A DIGITAL COMPUTER SIMULATION FOR SPARK-IGNITED ENGINE CYCLES

1963-01-01
630076
A comprehensive cycle analysis has been developed for four-stroke spark-ignited engines from which the indicated performance of a single cylinder engine was computed with a reasonable degree of accuracy. The step-wise cycle calculations were made using a digital computer. This analysis took into account mixture composition, dissociation, combustion chamber shape (including spark plug location), flame propagation, heat transfer, piston motion, engine speed, spark advance, manifold pressure and temperature, and exhaust pressure. A correlation between the calculated and experimental performance is reported for one engine at a particular operating point. The calculated pressure-time diagram was in good agreement with the experimental one in many respects. The calculated peak pressure was 10 per cent lower and the thermal efficiency 0.8 per cent higher than the measured values. Thus this calculational procedure represents a significant improvement over constant volume cycle approximations.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

CFD for Flow Rate and Air Re-Circulation at Vehicle Idle Conditions

2004-03-08
2004-01-0053
CFD method for the calculation of flow rate and air re-circulation at vehicle idle conditions is described. A small velocity is added to the ambient airflow in order to improve the numerical stability. The flow rate passing through the heat exchangers is insensitive to the ambient velocity, since the flow rate is largely determined by the fan operation. The air re-circulation, however, is quite sensitive to the ambient air velocity. The ambient velocity of U=-1m/s was found to be the more critical case, and is recommended for the air re-circulation analysis. The CFD analysis can also lead to design modifications improving the air re-circulation.
Technical Paper

CFRM Concept for Vehicle Thermal System

2002-03-04
2002-01-1207
Condenser, fan, radiator power train cooling module (CFRM) proposed by Delphi Automobile Systems was evaluated in the context of vehicle thermal system analysis. The results from the CFRM configuration were compared with those from the conventional condenser, radiator, and fan power train cooling module (CRFM). The analysis shows that for a typical passenger vehicle, the underhood temperature for the CFRM configuration is more than 10°C lower than its CRFM counterpart when the fan is operating at the same speed of 2500 rpm. This is due mainly to the higher mass flow rate impelled by the fan in the CFRM configuration. At the equal mass flow condition, both the CFRM and the CRFM configurations give similar underhood temperatures; but the fan in the CFRM configuration uses 19% less power, due mainly to the reduction in the fan speed needed to impel the same amount of mass flow rate.
Technical Paper

Corrosion Testing of 42-Volt Electrical Components

2003-03-03
2003-01-0308
As automobile power needs increase 42-volt electrical systems are being proposed for use in consumer vehicles. One concern when using these new systems is the corrosion resistance of these components, especially in underhood environments. Corrosion is an electrochemical phenomenon and as such can be altered (increased or decreased) by the application of an external current or voltage. Although unintentional, the use of a higher voltage electrical system has the ability to increase corrosion through its normal use. This program evaluated the impact of corrosion on electrical components powered by 14 and 42-volt DC systems. Accelerated corrosion test findings suggested that 42-volt systems may be more susceptible to corrosion, but without proper environmental shielding both supply system can have unacceptable degradation.
Technical Paper

Data-Driven Driving Skill Characterization: Algorithm Comparison and Decision Fusion

2009-04-20
2009-01-1286
By adapting vehicle control systems to the skill level of the driver, the overall vehicle active safety provided to the driver can be further enhanced for the existing active vehicle controls, such as ABS, Traction Control, Vehicle Stability Enhancement Systems. As a follow-up to the feasibility study in [1], this paper provides some recent results on data-driven driving skill characterization. In particular, the paper presents an enhancement of discriminant features, the comparison of three different learning algorithms for recognizer design, and the performance enhancement with decision fusion. The paper concludes with the discussions of the experimental results and some of the future work.
Technical Paper

Development of the Hybrid System for the Saturn VUE Hybrid

2006-04-03
2006-01-1502
The hybrid system for the 2007 Model Year Saturn VUE Green Line Hybrid SUV was designed to provide the fuel economy of a compact sedan, while delivering improved acceleration performance over the base vehicle, and maintaining full vehicle utility. Key elements of the hybrid powertrain are a 2.4L DOHC engine with dual cam-phasers, a modified 4-speed automatic transmission, an electric motor-generator connected to the crankshaft through a bi-directional belt-drive system, power electronics to control the motor-generator, and a NiMH battery pack. The VUE's hybrid functionality includes: engine stop-start, regenerative braking, intelligent charge control of the hybrid battery, electric power assist, and electrically motored creep. Methods of improving urban and highway fuel economy via optimal use of the hybrid motor and battery, engine and transmission hardware and controls modifications, and vehicle enhancements, are discussed.
Technical Paper

Driver Understanding and Recognition of Automotive ISO Symbols

1988-02-01
880056
This study assesses the understanding and recognition, by U.S. drivers, of the 25 automotive ISO symbols specified in SAE Standard J1048. A two-part survey was administered to 505 volunteers at a Secretary of State's office located in a Detroit suburb. Percentage results for symbol understanding indicated low levels of understanding for many symbols; percentage results for symbol recognition were generally much higher for all symbols. The effects of gender, age, and education level on the percentage results are summarized.
Technical Paper

Experimental and Modeling Evaluations of a Vacuum-Insulated Catalytic Converter

1999-10-25
1999-01-3678
Vehicle evaluations and model calculations were conducted on a vacuum-insulated catalytic converter (VICC). This converter uses vacuum and a eutectic PCM (phase-change material) to prolong the temperature cool-down time and hence, may keep the converter above catalyst light-off between starts. Tailpipe emissions from a 1992 Tier 0 5.2L van were evaluated after 3hr, 12hr, and 24hr soak periods. After a 12hr soak the HC emissions were reduced by about 55% over the baseline HC emissions; after a 24hr soak the device did not exhibit any benefit in light-off compared to a conventional converter. Cool-down characteristics of this VICC indicated that the catalyst mid-bed temperature was about 180°C after 24hrs. Model calculations of the temperature warm-up were conducted on a VICC converter. Different warm-up profiles within the converter were predicted depending on the initial temperature of the device.
Technical Paper

Injury Risk Curves for the WorldSID 50th Male Dummy

2009-11-02
2009-22-0016
The development of the WorldSID 50th percentile male dummy was initiated in 1997 by the International Organization for Standardization (ISO/SC12/TC22/WG5) with the objective of developing a more biofidelic side impact dummy and supporting the adoption of a harmonized dummy into regulations. More than 45 organizations from all around the world have contributed to this effort including governmental agencies, research institutes, car manufacturers and dummy manufacturers. The first production version of the WorldSID 50th male dummy was released in March 2004 and demonstrated an improved biofidelity over existing side impact dummies. Full-scale vehicle tests covering a wide range of side impact test procedures were performed worldwide with the WorldSID dummy. However, the vehicle safety performance could not be assessed due to lack of injury risk curves for this dummy. The development of these curves was initiated in 2004 within the framework of ISO/SC12/TC22/WG6 (Injury criteria).
Technical Paper

Measurements of Cycle to Cycle Variability of the Inlet Flow of Fuel Injectors Using LDA

2006-10-16
2006-01-3314
The focus of this research effort was to develop a technique to measure the cyclic variability of the mass injected by fuel injectors. Successful implementation of the measurement technique introduced in this paper can be used to evaluate injectors and improve their designs. More consistent and precise fuel injectors have the potential to improve fuel efficiency, engine performance, and reduce emissions. The experiments for this study were conducted at the Michigan State University Automotive Research Experiment Station. The setup consists of a fuel supply vessel pressurized by compressed nitrogen, a Dantec laser Doppler anemometry (LDA) system to measure the centerline velocity of fuel, a quartz tube for optical access, and a Cosworth IC 5460 to control the injector. The detector on the LDA system is capable of resolving Doppler bursts as short as 6μs, depending on the level of seeding, thus giving a detailed time/velocity profile.
Technical Paper

On the Potential of Low Heat Rejection DI Diesel Engines to Reduce Tail-Pipe Emissions

2005-04-11
2005-01-0920
Heat transfer to the combustion chamber walls constitutes a significant portion of the overall energy losses over the working cycle of a direct injection (DI) diesel engine. In the last few decades, numerous research efforts have been devoted to investigating the prospects of boosting efficiency by insulating the combustion chamber. Relatively few studies have focused on the prospects of reducing emissions by applying combustion chamber insulation. A main purpose of this study is to assess the potential of reducing in-cylinder soot as well as boosting aftertreatment performance by means of partially insulating the combustion chamber. Based on the findings from a conceptual study, a Low Heat Rejection (LHR) design, featuring a Nimonic 80A insert into an Aluminum piston, was developed and tested experimentally at various loads in a single-cylinder Hatz-engine.
Technical Paper

Optimum Design of Hood Ajar Switch For Quality

2006-04-03
2006-01-0735
The Hood ajar sensing system provides customer feedback regarding the latch positional state of hood. If the sensing system is not robust to variation due to manufacturing, thermal conditions, and assembly, diagnostic failures can result. Executing various elements of the design for six sigma process can reduce the potential for diagnostic failures. This paper presents a method for achieving quality improvements by developing transfer functions, and using them for sensitivity and variance analysis. Control parameters were optimized to minimize non-conformal situations in the presence of various noise conditions.
Technical Paper

PEM Fuel Cell System Solutions for Transportation

2000-03-06
2000-01-0373
PEM Fuel Cell technology has been advancing rapidly during the last several years as evidenced by various vehicle demonstrations by the major automotive companies. As the development continues to bring hardware to automotive system level solutions, many engineering challenges arise. This paper will deal with two (2) of these areas from an automotive system level perspective: Thermal Management and the Fuel Cell Stack. Both of these sub-system areas are critical to the success of the technology in meeting the requirements of tomorrow's automotive customer.
Journal Article

Power Dense and Robust Traction Power Inverter for the Second-Generation Chevrolet Volt Extended-Range EV

2015-04-14
2015-01-1201
The Chevrolet Volt is an electric vehicle with extended-range that is capable of operation on battery power alone, and on engine power after depletion of the battery charge. First generation Chevrolet Volts were driven over half a billion miles in North America from October 2013 through September 2014, 74% of which were all-electric [1, 12]. For 2016, GM has developed the second-generation of the Volt vehicle and “Voltec” propulsion system. By significantly re-engineering the traction power inverter module (TPIM) for the second-generation Chevrolet Volt extended-range electric vehicle (EREV), we were able to meet all performance targets while maintaining extremely high reliability and environmental robustness. The power switch was re-designed to achieve efficiency targets and meet thermal challenges. A novel cooling approach enables high power density while maintaining a very high overall conversion efficiency.
Technical Paper

Power-Based Noise Reduction Concept and Measurement Techniques

2005-05-16
2005-01-2401
This paper presents a Power-Based Noise Reduction (PBNR) concept and uses PBNR to set vehicle acoustic specifications for sound package design. This paper starts with the PBNR definition and describes the correct measurement techniques. This paper also derives the asymptotic relationships among PBNR, conventional noise reduction (NR), and sound transmission loss, for a simple case consisting of the source, path, and receiver subsystems. The advantages of using PBNR over conventional Noise Reduction (NR) are finally demonstrated in vehicle measurement examples.
Technical Paper

RF Link Budget Analysis of a 315MHz Wireless Link for Automotive Tire Pressure Monitoring System

2005-04-11
2005-01-1532
Inclusion of a Tire Pressure Monitoring System (TPMS) in a vehicle presents a new design challenge in terms of automotive electrical system integration. This paper examines the dynamic RF signal path characteristics of a TPMS data link operating at 315MHz as a short-range device Electromagnetic modeling results and anechoic chamber measurements provide signal path loss estimates for various system configurations. A qualitative link budget formulation is proposed that accounts for observed dynamic and quasi-static variation of the TPMS signal.
Technical Paper

Rationale for Technology Selections in GM's PNGV Precept Concept Car Based on Systems Analysis

2000-04-02
2000-01-1567
The CY2000 cornerstone goal of the Partnership for a New Generation of Vehicles (PNGV) is the demonstration in CY 2000 of a 5-passenger vehicle with fuel economy of up 80 mpg (3 l/100km). As a PNGV partner, GM will demonstrate a technology-demonstration concept vehicle, the Precept, having a lightweight aluminum-intensive body, hybrid-electric propulsion system and a portfolio of efficient vehicle technologies. This paper describes: 1) the strategy for the vehicle design including mass requirements, 2) the selection of dual axle application of regenerative braking and electric traction, and 3) the complementary perspective on energy management strategy. This paper outlines information developed through systems analysis that drove technology selections. The systems analyses relied on vehicle simulation models to estimate fuel economy associated with technology selections. Modeling analyses included consideration of both federal test requirements and more severe driving situations.
Technical Paper

Robust Assessment of USCAR Electrical Connectors Using Standardized Signal-To-Noise

2008-04-14
2008-01-0364
Robust assessment using standardized signal-to-noise (SS/N) is a Design For Six Sigma (DFSS) methodology used to assess the mating quality of USCAR electrical connectors. When the insertion force vs. distance relationship is compared to a standard under varying environmental and system-related noise conditions, the ideal function is transformed into a linear relationship between actual and ideal force at the sample points acquired during the mating displacement. Since the ideal function used in the robust assessment of competing designs has a linear slope of 1 through the origin, the SS/N function used is of the form 10 log (1/σ2), also known as nominal-the-best type 2. Using this assessment methodology, designs are compared, with a higher SS/N indicating lower variation from the standard.
X