Refine Your Search

Topic

Author

Search Results

Technical Paper

A Model-Based Technique for Spark Timing Control in an SI Engine Using Polynomial Regression Analysis

2009-04-20
2009-01-0933
Model-based methodologies for the engine calibration process, employing engine cycle simulation and polynomial regression analysis, have been developed and the reliability of the proposed method was confirmed by validating the model predictions with dynamometer test data. From the results, it was clear that the predictions by the engine cycle simulation with a knock model, which considers the two-stage hydrocarbon ignition characteristics of gasoline, were in good agreement with the dynamometer test data if the model tuning parameters were strictly adjusted. Physical model tuning and validation were done, followed by the creation of a dataset for the regression analysis of charging efficiency, EGR mass, and MBT using a 4th order polynomial equation. The stepwise method was demonstrated to yield a logarithm likelihood ratio and its false probability at each term in the polynomial equation.
Technical Paper

A New Diagnosis Method for an Air-Fuel Ratio Cylinder Imbalance

2012-04-16
2012-01-0718
A new diagnosis method for an air-fuel ratio cylinder imbalance has been developed. The developed diagnosis method is composed of two parts. The first part detects an occurrence of an air-fuel ratio cylinder imbalance by using a two revolution frequency component of an EGO sensor output signal or an UEGO sensor output signal upstream from a catalyst. The two revolution frequency component is from a cycle where an engine rotates twice. The second part of the diagnosis method detects an increase of emissions by using a low frequency component which is calculated from the output of an EGO sensor downstream from the catalyst. When the two revolution frequency component calculated using the upstream sensor output is larger than a certain level and the low frequency component calculated using the downstream sensor output is shifted to a leaner range, the diagnosis judges that the emissions increase is due to an air-fuel ratio cylinder imbalance.
Technical Paper

A New Engine Control System Using Direct Fuel Injection and Variable Valve Timing

1995-02-01
950973
A new engine drivetrain control system is described which can provide a higher gear ratio and leaner burning mixture and thus reduce the fuel consumption of spark ignition engines. Simulations were performed to obtain reduced torque fluctuation during changes in the air - fuel ratio and gear ratio, without increasing nitrogen oxide emissions, and with minimum throttle valve control. The results show that the new system does not require the frequent actuation of throttle valves because it uses direct fuel injection, which increases the air - fuel ratio of the lean burning limit. It also achieves a faster response in controlling the air mass in the cylinders. This results in the minimum excursion in the air - fuel ratio which in turn, reduces nitrogen oxide emissions.
Technical Paper

A Safety Concept based on a Safety Sustainer for Highly Automated Driving Systems

2016-04-05
2016-01-0130
Highly automated driving systems have a responsibility to keep a vehicle safe even in abnormal conditions such as random or systematic failures. However, creating redundancy in a system to respond to failures increases the cost of the system, and simple redundancy cannot detect systematic failures because some systematic failures occur in each system at the same time. Systematic failures in automated driving systems cannot be verified sufficiently during the development phase due to numerous patterns of parameters input from outside the system. A safety concept based on a “safety sustainer” for highly automated driving systems is proposed. The safety sustainer is designed for keeping a vehicle in a safe state for several seconds if a failure occurs in the system and notifying the driver that the system is in failure mode and requesting the driver to take over control of the vehicle.
Technical Paper

A State Adaptive Control Algorism for Vehicle Suspensions

1988-11-01
881769
This paper describes a state adaptive control method for vehicle suspensions proposed by Hitachi, Ltd. The objective of the control is to improve riding comfort and driving stability in reaction to road iregularities, exterior wind forces, and changes in vehicle loads as well as in reaction to inertial changes during cornering, breaking, and accelerating. The objective is attained by making considerable use of the relative displacement data between the body and the suspension. The state adaptive control system includes four shock absorbers whose damping forces can be tuned in three stages, four height sensors which measure the relative displacement, a vehicle speed sensor, and a microcomputer which decides the optimal damper stage. The validity of the proposed control method is shown through computer simulations and actual driving experiments. Vertical acceleration is reduced by about 55 % by switching from the soft damper to the hard damper in a computer simulation.
Technical Paper

A Study of Friction Characteristics of Continuously Variable Valve Event & Lift (VEL) System

2006-04-03
2006-01-0222
A continuously variable valve event and lift (VEL) system, actuated by oscillating cams, can provide optimum lift and event angles matching the engine operating conditions, thereby improving fuel economy, exhaust emission performance and power output. The VEL system allows small lift and event angles even in the engine operating region where the required intake air volume is small and the influence of valvetrain friction is substantial, such as during idling. Therefore, the system can reduce friction to lower levels than conventional valvetrains, which works to improve fuel economy. On the other hand, a distinct feature of oscillating cams is that their sliding velocity is zero at the time of peak lift, which differs from the behavior of conventional rotating cams. For that reason, it is assumed that the friction and lubrication characteristics of oscillating cams may differ from those of conventional cams.
Technical Paper

A Study of a New Aftertreatment System (1): A New Dosing Device for Enhancing Low Temperature Performance of Urea-SCR

2006-04-03
2006-01-0642
In order to reduce diesel NOx emissions, aftertreatment methods including LNT (Lean NOx Trap) and urea SCR (Selective Catalytic Reduction) have been researched. One of the shortcomings of urea SCR is its NOx reduction performance degradation at low exhaust gas temperatures and possible emission of unregulated byproducts. Here, a new type of a urea-dosing device to overcome these shortcomings is studied. This dosing device actively produces ammonia without depending upon the exhaust gas temperature, and designed for onboard application. The device incorporates an electrically heated bypass with a hydrolysis catalyst. An injector supplies urea solution into the bypass. The bypass is heated only when thermolysis is needed to produce ammonia (NH3). The hydrolysis catalyst further assists in the production of NH3. The ammonia gas obtained is then mixed with the main exhaust gas flow.
Technical Paper

A Study of a New Aftertreatment System (2): Control of Urea Solution Spray for Urea-SCR

2006-04-03
2006-01-0644
The urea-SCR system is one of the most promising aftertreatment systems for future automotive diesel engines. We developed a urea dosing device with twin urea injectors for onboard applications, to enhance the NOx reduction performance at low exhaust temperatures and to lower the electric power consumption of the SCR system. The injectors operate with a single-phase urea solution, without air assist. Of the injectors, one is used to supply urea to a bypass passage routing the exhaust, during low exhaust temperatures. The other injector is located on the wall of the main exhaust duct, directly supplying urea to the exhaust. This direct injection method has a uniform spray distribution problem. A set of impact plates were used to distribute the spray. Impact plates have a high potential for deposition, but use of film boiling was considered. A thermal analysis was conducted and as a result, deposit conditions were theoretically derived. This was confirmed through experiments.
Technical Paper

A Totally Integrated Vehicle Electronic Control System

1988-11-01
881772
A totally integrated vehicle electronic control system is described, which optimizes vehicle performance through use of electronics. The system implements efficient coordination of functions of the engine, drive-train, brakes, steering, and suspension control subsystems to give a smoother ride, better handling and greater safety. The principles of the system are based on control and stability augmentation strategies. Each subsystem has two observers which control the force of the actuators according to the vehicle dynamics. The system features a driver support system which allows the average driver to employ the full performance potential of the vehicle in exceptional situations, and an artificial response control system to ensure optimum response and comfort. Application of the system allows the driver to experience a new level of performance and a marked improvement in handling quality and ride comfort.
Technical Paper

A Urea-Dosing Device for Enhancing Low-Temperature Performance by Active-Ammonia Production in an SCR System

2008-04-14
2008-01-1026
A new urea-dosing device with an active-ammonia production function was developed. This function is achieved by an electrically heated bypass passage with a hydrolysis catalyst for urea-to-ammonia conversion. The new device also has the function of mixing ammonia and exhaust gas. It is compact and has low-pressure loss by using the vortex occurring at the back of a static vane. We built a trial device for a small diesel engine and obtained steady state and transient data. The heated-bypass concept can be used in the aftertreatment system of passenger cars. Although active-ammonia production consumes electric power, a predictive calculation of power consumption (based on experimental results) shows that the developed bypass heater can suppress the energy consumption enough not to harm the high-energy efficiency of diesel engines.
Technical Paper

A Virtual ECU and Its Application to Control System Analysis - Power Window System Demonstration

2016-04-05
2016-01-0022
A virtual power window control system was built in order to look into and demonstrate applications of microcontroller models. A virtual ECU simulated microcontroller hardware operations. The microcontroller program, which was written in binary digital codes, was executed step-by-step as the virtual ECU simulation went on. Thus, production-ready codes of ECUs are of primary interest in this research. The mechanical system of the power window, the DC motor to lift the window glass, the H-bridge MOSFET drivers, and the current sensing circuit to detect window locking are also modeled. This means that the hardware system of the control system was precisely modeled in terms of mechanical and circuit components. By integrating these models into continuous and discrete co-simulation, the power window control system was analyzed in detail from the microscopic command execution of the microcontroller to the macroscopic motion of the window mechanism altogether.
Technical Paper

Air-Fuel Ratio Sensor Utilizing Ion Transportation in Zirconia Electrolyte

1991-02-01
910501
To detect an air-fuel ratio in wide range is very important to control the automotive engines with low fuel consumption and low exhaust emissions. Although the application of zirconia electrolyte for this purpose has been proposed by the authors several years ago, there remained several problems due to the contamination of gas diffusion apertures which are exposed to the exhaust gas environment. Here the behavior of ions transported in zirconia electrolyte have been analyzed to optimize the structure and characteristics, and to guarantee the long life operation of sensor. Gas contents and their reactions in combustion process under the wide range air-fuel ratio have been analyzed, and these results were reflected to the analysis of ion transportation in zirconia electrolyte. Experimental results supported the analytical results, and they showed the possibilities of long life operation of zirconia air-fuel ratio sensor utilizing ion transportation phenomena.
Technical Paper

An Accurate Torque-based Engine Control by Learning Correlation between Torque and Throttle Position

2008-04-14
2008-01-1015
In recent years, integrated vehicle control systems have been developed to improve fuel economy and safety. As a result, engine control is shifting to torque-based systems for throttle / fuel / ignition control, to realize an engine torque demand from the system. This paper describes torque-based engine control technologies for SI (Spark Ignition) engine to improve torque control accuracy using a feedback control algorithm and an airflow sensor.
Technical Paper

An Air-Fuel Ratio and Ignition Timing Retard Control Using a Crank Angle Sensor for Reducing Cold Start HC

2009-04-20
2009-01-0588
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas is reduced by controlling the air-fuel ratio to the low HC range and retarding the ignition timing as much as possible until the engine stability reaches a certain deterioration level. Conventionally however, the target air-fuel ratio has been set at a richer range than the low HC range and the target ignition timing has been more advanced than the engine stability limit, in order to stabilize the engine for various disturbances. As a result, the HC concentration has not been minimized. To solve this problem, a new engine control has been developed. This control uses a crank angle sensor to simultaneously control the air-fuel ratio and the ignition timing so that the HC concentration can be minimized.
Journal Article

An Application of the Particle Velocity Transfer Path Analysis to a Hybrid Electric Vehicle Motor Sound

2013-05-13
2013-01-1999
A pioneering approach to implement transfer path analysis (TPA) is proposed in this paper through applying it to an automobile. We propose to use particle velocity as a measure of TPA, in addition to using sound pressure as a conventional measure for TPA. These two quantities together will give a comprehensive and complete definition of sound. Although sound pressure is a scalar, while particle velocity is a vector, it is also proposed that the same technique of the conventional sound pressure TPA should be independently applicable to each component of particle velocity vector. This has been experimentally verified with a study on our test box system. In this paper, we apply the proposed TPA to an actual vehicle to examine its applicability, advantages and limitations. The driving motor sound of a hybrid electric vehicle is chosen as the case study. A tri-axial particle velocity sensor which also measures sound pressure at the same point is utilized in the experiment.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

1992-02-01
920239
An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.
Technical Paper

Application of Model Checking to Automotive Control Software with Slicing Technique

2013-04-08
2013-01-0436
To detect difficult-to-find defects in automotive control systems, we have proposed a modeling method with a program slicing technique. In this method, a verifier adjusts the boundaries of source code to be extracted on a variable dependence graph, in a kind of data flow. We have developed software tools for this method and achieved a 35% decrease in total verification time on model checking. This paper provides some consideration on effective cases of the method from verification practices. There are two types of malfunction causes: one is the timing of processes (race conditions), and the other is complex logics. Each type requires different elements in external environment models. Furthermore, we propose regression verification based on the modeling method above, to further reduce verification time on model checking. The paper outlines tool extensions needed to realize regression verification.
Technical Paper

CAN Security: Cost-Effective Intrusion Detection for Real-Time Control Systems

2014-04-01
2014-01-0340
In-vehicle networks are generally used for computerized control and connecting information technology devices in cars. However, increasing connectivity also increases security risks. “Spoofing attacks”, in which an adversary infiltrates the controller area network (CAN) with malicious data and makes the car behave abnormally, have been reported. Therefore, countermeasures against this type of attack are needed. Modifying legacy electronic control units (ECUs) will affect development costs and reliability because in-vehicle networks have already been developed for most vehicles. Current countermeasures, such as authentication, require modification of legacy ECUs. On the other hand, anomaly detection methods may result in misdetection due to the difficulty in setting an appropriate threshold. Evaluating a reception cycle of data can be used to simply detect spoofing attacks. However, this may result in false detection due to fluctuation in the data reception cycle in the CAN.
Technical Paper

Cold Start HC Reduction with Feedback Control Using a Crank Angle Sensor

2008-04-14
2008-01-1010
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas can be reduced by optimizing the air-fuel ratio. However, a conventional air-fuel ratio feedback control does not operate for the first ten seconds after the engine has started because the air-fuel ratio sensor has not yet been activated. In this paper, we report on a study to optimize the air-fuel ratio using a crank angle sensor until the air-fuel ratio sensor has been activated. A difference in fuel properties was used as a typical disturbance factor. The control was applied to both a direct-injection engine (DI) and a port-injection engine (MPI). It was evaluated for two fuel types: one which evaporates easily and one which does not. The experimental results show the air-fuel ratio is optimized for both types of fuel.
Technical Paper

Computer-Aided Calibration Methodology for Spark Advance Control Using Engine Cycle Simulation and Polynomial Regression Analysis

2007-10-29
2007-01-4023
The increasing number of controllable parameters in modern engine systems has led to increasingly complicated and enlarged engine control software. This in turn has created dramatic increases in software development time and cost. Model-based control design seems to be an effective way to reduce development time and costs and also to enable engineers to understand the complex relationship between the many controllable parameters and engine performance. In the present study, we have developed model-based methodologies for the engine calibration process, employing engine cycle simulation and regression analysis. The reliability of the proposed method was investigated by validating the regression model predictions with measured data.
X