Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

An Investigation of the Transient DPF Pressure Drop under Cold Start Conditions in Diesel Engines

2017-10-08
2017-01-2372
To monitor emission-related components/systems and to evaluate the presence of malfunctioning or failures that can affect emissions, current diesel engine regulations require the use of on-board diagnostics (OBD). For diesel particulate filters (DPF), the pressure drop across the DPF is monitored by the OBD as the pressure drop is approximately linear related to the soot mass deposited in a filter. However, sudden acceleration may cause a sudden decrease in DPF pressure drop under cold start conditions. This appears to be caused by water that has condensed in the exhaust pipe, but no detailed mechanism for this decrease has been established. The present study developed an experimental apparatus that reproduces rapid increases of the exhaust gas flow under cold start conditions and enables independent control of the amount of water as well as the gas flow rate supplied to the DPF.
Technical Paper

An Investigation on the Simultaneous Reduction of Particulate and NOx by Controlling Both the Turbulence and the Mixture Formation in DI Diesel Engines

1993-10-01
932797
This paper presents experimental results of the reduction of both particulate and NOx emitted from direct injection diesel engines by a two stage combustion process. The primary combustion is made very rich to reduce NOx and then the particulate is oxidized by strong turbulence generated during the secondary combustion. The rich mixture is formed by low pressure fuel injection and a small cavity combustion chamber configuration. The strong turbulence is generated by a jet of burned gas from an auxiliary chamber installed at the cylinder head. The results showed that NOx was reduced significantly while maintaining fuel consumption and particulate emissions. An investigation was also carried out on the particulate reduction process in the combustion chamber with the turbulence by gas sampling and in-cylinder observation with an optical fiber scope and a high speed camera.
Technical Paper

Analysis of Ambient Gas Entrainment Processes in Intermittent Gas Jets by LIFA Technique

1996-02-01
960835
Time-resolved and local ambient gas entrainment processes in intermittent gas jets with a range of injection conditions were evaluated by a LIFA (Laser-Induced Fluorescence of Ambient gas) technique. The gas injection conditions tested were: mean discharge velocity, um; mean discharge turbulence intensity, u′m; kinematic viscosity of the gas jet, ν; specific gravity of the gas jet, ρj; and of the ambient gas, ρa. Experimental results showed that the entrainment of jets are enhanced with higher eddy kinematic viscosity, νt, measured by a hot wire anemometer. In conclusion, the mean jet concentration was approximated with only one parameter, (ρj/ρa)D2/[(ν+νt)Δt].
Technical Paper

Catalytic Reduction of NOx in Actual Diesel Engine Exhaust

1992-02-01
920091
Copper ion-exchanged ZSM-5 zeolite catalyst, which reduces nitrogen oxides (NOx) in the presence of oxygen and hydrocarbons, was applied to actual diesel engine exhaust. Copper ion-exchanged ZSM-5 zeolite effectively reduced NOx by 25% in normal engine operation, and by 80% when hydrocarbons in the exhaust were increased. Water in the exhaust gas decreased the NOx reduction efficiency, but oxygen and sulfur appeared to have only a small effect. Maximum NOx reduction was observed at 400°C irrespective of hydrocarbon species, and did not decrease with space velocity up to values of 20,000 1/h. THE PURPOSE of this paper is to evaluate the possibilities and problems in catalytic reduction of NOx in actual diesel engine exhaust. Here, a copper ion-exchanged ZSM-5 zeolite (Cu-Z) catalyst was applied to diesel engine exhaust to examine the dependency of the NOx reduction efficiency on temperature and space velocity. The effects of oxygen, water and hydrocarbons were also examined.
Technical Paper

Combustion Characteristics of Emulsified Blends of Aqueous Ethanol and Diesel Fuel in a Diesel Engine with High Rates of EGR and Split Fuel Injections

2011-08-30
2011-01-1820
Silent, clean, and efficient combustion was realized with emulsified blends of aqueous ethanol and diesel fuel in a DI diesel with pilot injection and cooled EGR. The pilot injection sufficiently suppressed the rapid combustion to acceptable levels. The thermal efficiency with the emulsified fuel improved as the heat release with the pilot injection was retarded to near top dead center, due to poor ignitability and also due to a reduction in afterburning. With the emulsified fuel containing 40 vol% ethanol and 10 vol% water (E40W10), the smokeless operation range can be considerably extended even under low fuel injection pressure or low intake oxygen content conditions.
Journal Article

Combustion Characteristics of Emulsified Blends of Water and Diesel Fuel in a Diesel Engine with Cooled EGR and Pilot Injection

2013-10-15
2013-32-9022
Water and diesel fuel emulsions containing 13% and 26% water by volume were investigated in a modern diesel engine with relatively early pilot injection, supercharging, and cooled EGR. The heat release from the pilot injection with water emulsions is retarded toward the top dead center due to the poor ignitability, which enables larger pilot and smaller main injection quantities. This characteristic results in improvements in the thermal efficiency due to the larger heat release near the top dead center and the smaller afterburning. With the 26% water emulsion, mild, smokeless, and very low NOx operation is possible at an optimum pilot injection quantity and 15% intake oxygen with EGR at or below 0.9 MPa IMEP, a condition where large smoke emissions are unavoidable with regular unblended diesel fuel. Heat transfer analysis with Woschni's equation did not show the decrease in cooling loss with the water emulsion fuels.
Technical Paper

Development of a Micro-Reactor HC-SCR System and the Evaluation of NOx Reduction Characteristics

2015-09-01
2015-01-2021
To reduce NOx emissions from diesel engines, the urea-SCR (selective catalytic reduction) system has been introduced commercially. In urea-SCR, the freezing point of the urea aqueous solution, the deoxidizer, is −11°C, and the handling of the deoxidizer under cold weather conditions is a problem. Further, the ammonia escape from the catalyst and the generation of N2O emissions are also problems. To overcome these disadvantages of the urea-SCR system, the addition of a hydrocarbon deoxidizer has attracted attention. In this paper, a micro-reactor SCR system was developed and attached to the exhaust pipe of a single cylinder diesel engine. With the micro-reactor, the catalyst temperature, quantity of deoxidizer, and the space velocity can be controlled, and it is possible to use it with gas and liquid phase deoxidizers. The catalyst used in the tests reported here is Ag(1wt%)-γAl2O3.
Technical Paper

HPC-LES for Unsteady Aerodynamics of a Heavy Duty Truck in Wind Gust - 1st report: Validation and Unsteady Flow Structures

2010-04-12
2010-01-1010
Large eddy simulation based on high-performance computing technique was conducted to investigate the unsteady aerodynamic forces acting on a full-scale heavy duty truck subjected to sudden crosswind. The CFD results were applied to evaluate the effect of the unsteady external forces on a vehicle motion, as a first step toward a more reliable vehicle motion analysis. As the first report, the numerical method was validated on the DNW wind-tunnel data by comparing the time-averaged drag and lateral forces at various yawing angles up to 10 degrees. Then the method was applied to the case when the vehicle goes through the crosswind region. The time series of the aerodynamic forces were acquired and discussed through the visualization of instantaneous flow structures around the vehicle. It was observed that drastic undershooting and overshooting of the yawing moment acts on the vehicle during the rushing in and out process.
Technical Paper

HPC-LES for Unsteady Aerodynamics of a Heavy Duty Truck in Wind Gust - 2nd report: Coupled Analysis with Vehicle Motion

2010-04-12
2010-01-1021
The effect of unsteady aerodynamics on the motion of a heavy duty truck subjected to sudden crosswinds was analyzed in vehicle-dynamics simulations. Large eddy simulation based on high-performance computing (LES-HPC) was applied to evaluate the effect of unsteady external forces on vehicle motion as a first step toward a more reliable vehicle motion analysis. Before the vehicle-dynamics simulations, the steady and unsteady aerodynamics of a simplified model of a heavy truck developed in our first report were analyzed by HPC-LES for various aerodynamic yaw angle conditions. On the basis of these aerodynamic analyses, two vehicle-dynamics simulations were conducted for transient crosswind conditions. One simulation was coupled with unsteady aerodynamic forces and the other applied a conventional approach with quasi-steady aerodynamics.
Technical Paper

Quantitative Measurements and Analysis of Ambient Gas Entrainment into Intermittent Gas Jets by Laser-Induced Fluorescence of Ambient Gas (LIFA)

1993-03-01
930970
Mixture formation processes of intermittent gas jets were visualized and quantified with high accuracy by a uniquely developed LIF technique (LIFA). Mixture strength inside gas jets was quantified by the fluorescence of iodine in the ambient gas excited by the sheet light of a Nd:YAG laser Two dimensional images of intermittent gas jets of various velocities were continuously recorded with VTR and quantified with high accuracy. The optimum conditions for measurements and accuracy with the LIFA technique were investigated. At the optimum setting of the initial iodine concentration in the ambient gas, accuracies better than 95% were obtained for the ambient gas entrainment ratio or jet concentration. The experimental results show that considerable amounts of ambient gas entrain just under the umbrella-like profile at the top of the jet. The mean jet concentration decreased with decreased nozzle diameter (D), and time elapsed after injection (Δt).
Technical Paper

Reduction of Smoke and NOx by Strong Turbulence Generated During the Combustion Process in D.I. Diesel Engines

1992-02-01
920467
This paper presents results of experiments to reduce smoke emitted from direct Injection diesel engines by strong turbulence generated during the combustion process. The turbulence was created by jets of burned gas from an auxiliary chamber installed in the cylinder head. Strong turbulence, which was induced late in the combustion period, enhanced the mixing of air with unburned fuel and soot, resulting in a remarkable reduction of smoke and particulate; NOx did not show any increase with this system, and thermal efficiency was improved at high loads. The paper also shows that the combination of EGR and water injection with this system effectively reduces the both smoke and NOx.
Technical Paper

Significant NOx Reductions with Direct Water Injection into the Sub-Chamber of an IDI Diesel Engine

1995-02-01
950609
The effect of direct water injection into the combustion chamber on NOx reduction in an IDI diesel engine was investigated. The temperature distribution in the swirl chamber was analyzed quantitatively with high speed photography and the two color method. Direct water injection into a swirl chamber prior to fuel injection reduced NOx emission significantly over a wide output range without sacrifice of BSFC. Other emissions were almost unchanged or slightly decreased with water injection. Water injection reduced the flame temperature at the center of the swirl chamber, while the mean gas temperature in the cylinder and the rate of heat release changed little.
Technical Paper

Simultaneous Reductions in Diesel NOx and Smoke Emissions with Aqueous Metal-Salt Solutions Directly Injected into the Combustion Chamber

1996-05-01
961164
The effect of several aqueous metal-salt solutions on NOx and smoke lowering in an IDI diesel engine were examined. The solutions were directly injected into a divided chamber independent of the fuel injection. The results showed that significant lowering in NOx and smoke over a wide operation range could be achieved simultaneously with alkali metal solutions which were injected just prior to the fuel injection. With sodium-salt solutions, for instance, NOx decreased by more than 60 % and smoke decreased 50 % below conventional operation. The sodium-salt solution reduced dry soot significantly, while total particulate matter increased with increases in the water soluble fractions.
Journal Article

Unsteady Vehicle Aerodynamics during a Dynamic Steering Action: 2nd Report, Numerical Analysis

2012-04-16
2012-01-0448
Unsteady aerodynamic forces acting on vehicles during a dynamic steering action were investigated by numerical simulation, with a special focus on the vehicles' yaw and lateral motions. Two sedan-type vehicles with slightly different geometries at the front pillar, side skirt, under cover, and around the front wheel were adopted for comparison. In the first report, surface pressure on the body and total pressure behind the front wheel were measured in an on-road experiment. Then the relationships between the vehicles' lateral dynamic motion and unsteady aerodynamic characteristics during cornering motions were discussed. In this second report, the vehicles' meandering motions observed in on-road measurements were modeled numerically, and sinusoidal motions of lateral, yaw, and slip angles were imposed. The responding yaw moment was phase averaged, and its phase shift against the imposed slip angle was measured to assess the aerodynamic damping.
Journal Article

Vehicle Aerodynamics Simulation for the Next Generation on the K Computer: Part 1 Development of the Framework for Fully Unstructured Grids Using up to 10 Billion Numerical Elements

2014-04-01
2014-01-0621
A simulation framework for vehicle aerodynamics using up to 10 billion fully unstructured cells has been developed on a world-fastest class supercomputer, called the K computer, in Kobe, Japan. The simulation software FrontFlow/red-Aero was fully optimized on the K computer to utilize up to 10,000 processors with tens of thousands of cores. A hybrid parallelization method using MPI among processors and OpenMP among cores inside each processor was adopted. The code was specially tuned for unsteady aerodynamic simulation including large-eddy simulation, and low Mach number approximation was adopted to avoid excessive iterations usually required for the fully incompressible algorithm. The automated mesh refining system was developed to generate unstructured meshes of up to 10 billion cells. In the system, users only generate unstructured meshes in the order of tens of millions of cells directly using commercial preprocessing software.
Technical Paper

Visualization and Heat Release Analysis of Premixed Diesel Combustion with Various Fuel Ignitabilities and Oxygen Concentrations in a Constant Volume Combustion Vessel

2013-04-08
2013-01-0899
Low NOx and soot free premixed diesel combustion can be realized by increasing ignition delays in low oxygen atmospheres, as well as the combustion here also depends on fuel ignitability. In this report single intermittent spray combustion with primary reference fuels and a normal heptane-toluene blend fuel under several oxygen concentrations in a constant volume combustion vessel was analyzed with high-speed color video and pressure data. Temperature and KL factor distributions are displayed with a 2-D two-color method. The results show that premixing is promoted with a decrease in oxygen concentration, and the local high temperature regions, above 2200 K, as well as the duration of their appearance decreases with the oxygen concentration. With normal heptane, mild premixed diesel combustion can be realized at 15 vol% oxygen and there is little luminous flame.
X