Refine Your Search

Topic

Search Results

Technical Paper

A Calculation Procedure for the Evaluation of Cold Emissive Behavior of High-Performance Motorcycles

2011-09-11
2011-24-0200
All the experimental investigations performed in the last years on newly sold motorcycles, equipped with a three-way catalyst and electronic mixture control, clearly indicate that CO and HC cold additional emissions, if compared with those exhausted in hot conditions, represent an important proportion of total emissions. Consequently, calculation programs for estimating emissions from road transports for air quality modeling in dedicated local areas should take into consideration this effect. From this motivation, an experimental activity on motorcycles cold emissive behavior is being jointly conducted by Istituto Motori of the National Research Council (IM-CNR) and the Department of Mechanic and Energetic (DiME) of the University of Naples.
Technical Paper

A Power Split Hybrid Propulsion System for Vehicles with Gearbox

2020-06-30
2020-37-0014
New internal combustion engines (ICE) are characterized by increasing maximum efficiency, thanks to the adoption of strategies like Atkinson cycle, downsizing, cylinder deactivation, waste heat recovery and so on. However, the best performance is confined to a limited portion of the engine map. Moreover, electric driving in urban areas is an increasingly pressing request, but battery electric vehicles use cannot be easily spread, due to limited vehicle autonomy and recharging issues. Therefore, hybrid propulsion systems are under development, in order to reduce vehicle fuel consumption, by decoupling the ICE running from road load, as well as to permit energy recovery and electric driving. This paper analyses a new-patented solution for power split hybrid propulsion system with gearbox. The system comprises an auxiliary power unit, adapted to store and/or release energy, and a planetary gear set, which is interposed between the ICE and the gearbox.
Journal Article

Analysis of Knock Tendency in a Small VVA Turbocharged Engine Based on Integrated 1D-3D Simulations and Auto-Regressive Technique

2014-04-01
2014-01-1065
In the present paper, two different methodologies are adopted and critically integrated to analyze the knock behavior of a last generation small size spark ignition (SI) turbocharged VVA engine. Particularly, two full load operating points are selected, exhibiting relevant differences in terms of knock proximity. On one side, a knock investigation is carried out by means of an Auto-Regressive technique (AR model) to process experimental in-cylinder pressure signals. This mathematical procedure is used to estimate the statistical distribution of knocking cycles and provide a validation of the following 1D-3D knock investigations. On the other side, an integrated numerical approach is set up, based on the synergic use of 1D and 3D simulation tools. The 1D engine model is developed within the commercial software GT-Power™. It is used to provide time-varying boundary conditions (BCs) for the 3D code, Star-CD™.
Technical Paper

Analysis of the Cooling Plant of a High Performance Motorbike Engine

2012-04-16
2012-01-0354
This paper is based on a Research Project of the Department of Mechanical Engineering (DiME) in collaboration with Aprilia, the Italian motorbike manufacturer. In an attempt to simulate the functioning of the cooling plant of the Aprilia RSV-4 motorbike a numerical model was constructed using mono-dimensional and three-dimensional simulation codes. Our ultimate aim was to create a simulation model which could be of assistance to engine designers to improve cooling plant performance, thereby reducing research and development costs. The model allows to simulate the running conditions of the whole cooling circuit upon variations in environmental and running conditions. In particular, the centrifugal pump of the cooling plant was simulated by a 3D commercial software, while the whole circuit was built by a 1D commercial code which allows simulation of all the thermal exchanges and pressure drops in the cooling circuit.
Technical Paper

CFD Modeling and Validation of the ECN Spray G Experiment under a Wide Range of Operating Conditions

2019-09-09
2019-24-0130
The increasing diffusion of gasoline direct injection (GDI) engines requires a more detailed and reliable description of the phenomena occurring during the fuel injection process. As well known the thermal and fluid-dynamic conditions present in the combustion chamber greatly influence the air-fuel mixture process deriving from GDI injectors. GDI fuel sprays typically evolve in wide range of ambient pressure and temperatures depending on the engine load. In some particular injection conditions, when in-cylinder pressure is relatively low, flash evaporation might occur significantly affecting the fuel-air mixing process. In some other particular injection conditions spray impingement on the piston wall might occur, causing high unburned hydrocarbons and soot emissions, so currently representing one of the main drawbacks of GDI engines.
Technical Paper

Chaos Theory Approach as Advanced Technique for GDI Spray Analysis

2017-03-28
2017-01-0839
The paper reports an innovative method of analysis based on an advanced statistical techniques applied to images captured by a high-speed camera that allows highlighting phenomena and anomalies hardly detectable by conventional optical diagnostic techniques. The images, previously elaborated by neural network tools in order for clearly identifying the contours, have been analyzed in their time evolution as pseudo-chaotic variables that may have internal periodic components. In addition to the Fourier analysis, tools as Lyapunov and Hurst exponents and average Kω permitted to detect the chaos level of the signals. The use of this technique has permitted to distinguish periodic oscillations from chaotic variations and to detect those parameters that actually determine the spray behavior.
Technical Paper

Correlation between Simulated Volume Fraction Burned Using a Quasi-Dimensional Model and Flame Area Measured in an Optically Accessible SI Engine

2017-03-28
2017-01-0545
Multi-fuel operation is one of the main topics of investigative research in the field of internal combustion engines. Spark ignition (SI) power units are relatively easily adaptable to alternative liquid-as well as gaseous-fuels, with mixture preparation being the main modification required. Numerical simulations are used on an ever wider scale in engine research in order to reduce costs associated with experimental investigations. In this sense, quasi-dimensional models provide acceptable accuracy with reduced computational efforts. Within this context, the present study puts under scrutiny the assumption of spherical flame propagation and how calibration of a two-zone combustion simulation is affected when changing fuel type. A quasi-dimensional model was calibrated based on measured in-cylinder pressure, and numerical results related to the two-zone volumes were compared to recorded flame imaging.
Journal Article

Development of Chemistry-Based Laminar Flame Speed Correlation for Part-Load SI Conditions and Validation in a GDI Research Engine

2018-04-03
2018-01-0174
The detailed study of part-load conditions is essential to characterize engine-out emissions in key operating conditions. The relevance of part-load operations is further emphasized by the recent regulations such as the new WLTP standard. Combustion development at part-load operations depends on a complex interplay between moderate turbulence levels (low engine speed and tumble ratio), low in-cylinder pressure and temperature, and stoichiometric-to-lean mixture quality (to maximize fuel efficiency). From a modelling standpoint, the reduced turbulence intensity compared to full-load operations complicates the interaction between different sub-models (e.g., reconsideration of the flamelet hypothesis adopted by common combustion models). In this article, the authors focus on chemistry-based simulations for laminar flame speed of gasoline surrogates at conditions typical of part-load operations. The analysis is an extension of a previous study focused on full-load operations.
Technical Paper

ECN Spray G Injector: Assessment of Numerical Modeling Accuracy

2018-04-03
2018-01-0306
Gasoline Direct Injection (GDI) is a leading technology for Spark Ignition (SI) engines: control of the injection process is a key to design the engine properly. The aim of this paper is a numerical investigation of the gasoline injection and the resulting development of plumes from an 8-hole Spray G injector into a quiescent chamber. A LES approach has been used to represent with high accuracy the mixing process between the injected fuel and the surrounding mixture. A Lagrangian approach is employed to model the liquid spray. The fuel, considered as a surrogate of gasoline, is the iso-octane which is injected into the high-pressure vessel filled with nitrogen. The numerical results have been compared against experimental data realized in the optical chamber. To reveal the geometry of plumes two different imaging techniques have been used in a quasi-simultaneous mode: Mie-scattering for the liquid phase and schlieren for the gaseous one.
Journal Article

Experimental Characterization of High-Pressure Impinging Sprays for CFD Modeling of GDI Engines

2011-04-12
2011-01-0685
Today, Direct-Injection systems are widely used on Spark-Ignition engines in combination with turbo-charging to reduce the fuel-consumption and the knock risks. In particular, the spread of Gasoline Direct Injection (GDI) systems is mainly related to the use of new generations of multi-hole, high-pressure injectors whose characteristics are quite different with respect to the hollow-cone, low-pressure injectors adopted in the last decade. This paper presents the results of an experimental campaign conducted on the spray produced by a GDI six-holes injector into a constant volume vessel with optical access. The vessel was filled with air at atmospheric pressure. Different operating conditions were considered for an injection pressure ranging from 3 to 20 MPa. For each operating condition, spray images were acquired by a CCD camera and then post processed to evaluate the spray penetration and cone angles.
Technical Paper

Experimental and Numerical Characterization of Diesel Injection in Single-Cylinder Research Engine with Rate Shaping Strategy

2017-09-04
2017-24-0113
The management of multiple injections in compression ignition (CI) engines is one of the most common ways to increase engine performance by avoiding hardware modifications and after-treatment systems. Great attention is given to the profile of the injection rate since it controls the fuel delivery in the cylinder. The Injection Rate Shaping (IRS) is a technique that aims to manage the quantity of injected fuel during the injection process via a proper definition of the injection timing (injection duration and dwell time). In particular, it consists in closer and centered injection events and in a split main injection with a very small dwell time. From the experimental point of view, the performance of an IRS strategy has been studied in an optical CI engine. In particular, liquid and vapor phases of the injected fuel have been acquired via visible and infrared imaging, respectively. Injection parameters, like penetration and cone angle have been determined and analyzed.
Technical Paper

Experimental and Numerical Investigation of High-Pressure Diesel Sprays with Multiple Injections at Engine Conditions

2010-04-12
2010-01-0179
A numerical methodology to simulate the high pressure spray evolution and the fuel-air mixing in diesel engines is presented. Attention is focused on the employed atomization model, a modified version of the Huh and Gosman, on the definition of a turbulence length scale limiter and of an adaptive local mesh refinement technique to minimize the result grid dependency. All the discussed models were implemented into Lib-ICE, which is a set of libraries and solvers, specifically tailored for engine simulations, which runs under the open-source CFD technology OpenFOAM®. To provide a comprehensive assessment of the proposed methodology, the validation procedure consisted into simulating, with a unique and coherent setup of all models, two different sets of experiments: a non-evaporating diesel fuel spray in a constant-volume vessel with optical access and an evaporating non-reacting diesel fuel spray in an optical engine.
Technical Paper

Flash Boiling Evidences of a Multi-Hole GDI Spray under Engine Conditions by Mie-Scattering Measurements

2015-09-01
2015-01-1945
During an injection process, a fluid undergoes a sudden pressure drop across the nozzle. If the pressure downstream the injector is below the saturation value of the fluid, superheated conditions are reached and thermodynamic instabilities realized. In internal combustion engines, flashing conditions greatly influence atomization and vaporization processes of a fuel as well as the mixture formation and combustion. This paper reports imaging behavior of a fuel under both flash boiling and non-flash boiling conditions. A GDI injector, eight-hole, 15.0 cc/s @ 10 MPa static flow, injected a single-component fluid (iso-octane), generating the spray. Experiments were carried out in an optically-accessible constant-volume quiescent vessel by Mie-scattering technique. A C-Mos high-speed camera was used to acquire cycle-resolved images of the spray evolving in the chamber filled with N2 which pressure ranged between 0.05 and 0.3 MPa.
Technical Paper

Fuzzy Logic Approach to GDI Spray Characterization

2016-04-05
2016-01-0874
Advanced numerical techniques, such as fuzzy logic and neural networks have been applied in this work to digital images acquired on a mono-component fuel spray (iso-octane), in order to define, in a stochastic way, the gas-liquid interface evolution. The image is a numerical matrix and so it is possible to characterize geometrical parameters and the time evolution of the jet by using deterministic, statistical stochastic and other several kinds of approach. The algorithm used works with the fuzzy logic concept to binarize the shades gray of the pixel, depending them, by using the schlieren technique, on the gas density. Starting from a primary fixed threshold, the applied technique, can select the ‘gas’ pixel from the ‘liquid’ pixel and so it is possible define the first most probably boundary lines of the spray.
Technical Paper

GDI Spray-Wall Interaction with Numerical Characterization: Wall Temperature Influence

2015-04-14
2015-01-0917
The work analyses, from both an experimental and a numerical point of view, the impingement of a spray generated from a GDI injector on a hot solid wall. The temperature of the surface is identified as an important parameter affecting the outcome after impact. A gasoline spray issuing from a customized single-hole injector is characterized in a quiescent optically-accessible vessel as it impacts on an aluminum plate placed at 22.5 mm from the injector tip. Optical investigations are carried out at atmospheric back-pressure by a direct schlieren optical set-up using a LED as light source. A synchronized C-Mos high-speed camera captures cycle-resolved images of the evolving impact. The spatial and temporal evolution of the liquid and vapor phases are derived. They serve to define a data base to be used for the validation of a properly formulated 3D CFD model suitable to describe the impact of the fuel on the piston head in a real engine.
Technical Paper

High Spatial Resolution Visualization and Spectroscopic Investigation of the Flame Front Propagation in the Combustion Chamber of a Scooter Engine

2010-04-12
2010-01-0351
The match between the increasing performance demands and stringent requirements of emissions and fuel consumption reduction needs a strong evolution in the 2-wheel vehicle technology. In particular many steps forward should be taken for the optimization of modern small motorcycle and scooter at low engine speeds and low temperature start. To this aim, the detailed understandings of thermal and fluid-dynamic phenomena that occur in the combustion chamber are fundamental. In this work, experimental activities were realized in the combustion chamber of a single-cylinder 4-stroke optical engine. The engine was equipped with a four-valve head of a commercial scooter engine. High spatial resolution imaging was used to follow the flame kernel growth and flame front propagation. Moreover, the effects of an abnormal combustion due to firing of fuel deposition near the intake valves and on the piston surface were investigated.
Technical Paper

Imaging and Vibro-Acoustic Diagnostic Techniques Comparison for a GDI Fuel Injector

2019-09-09
2019-24-0058
This work presents the results of an experimental investigation on a GDI injector, in order to analyze fuel injection process and atomization phenomenon, correlating imaging and vibro-acoustic diagnostic techniques. A single-hole, axially-disposed, 0.200 mm diameter GDI injector was used to spray commercial gasoline in a test chamber at room temperature and atmospheric backpressure. The explored injection pressures were ranged from 5.0 to 20.0 MPa. Cycle-resolved acquisitions of the spray evolution were acquired by a high-speed camera. Simultaneously, the vibro-acoustic response of the injector was evaluated. More in detail, noise data acquired by a microphone sensor were analyzed for characterizing the acoustic emission of the injection, while a spherical loudspeaker was used to excite the spray injection at a proper distance detecting possible fuel spray resonance phenomena.
Technical Paper

In-Cylinder Spectroscopic Measurements of Combustion Process in a SI Engine Fuelled with Butanol-Gasoline Blend

2013-04-08
2013-01-1318
In-cylinder optical diagnostic was applied to study butanol-gasoline blend combustion in a SI engine. Spark timing and fuel injection mode were changed to work in normal and knocking conditions. The experiments were realized in a single-cylinder ported fuel injection SI engine with an external boosting device. The engine worked like-stoichiometric mixture at 2000 rpm, medium boosting and wide open throttle. UV-visible natural emission spectroscopy allowed to follow the formation and the evolution of the main compounds and radical species that characterize the combustion process from the spark ignition until the exhaust. Particular interest was devoted to OH and CO₂* evolution, and to the spectral evidence of soot precursors due to fuel deposits burning. OH resulted the best marker for combustion both in normal and abnormal conditions.
Technical Paper

Influence of Driving Cycles on Powered Two-Wheelers Emissions, Fuel Consumption and Cold Start Behavior

2013-04-08
2013-01-1048
A wide investigation on powered two-wheelers (PTWs) is presented, aiming at the analysis of the influence of the driving characteristics on PTWs exhaust emissions and fuel consumption, a deeper comprehension of the engine and after-treatment system behavior within the cold start transient and the evaluation of cold start additional emissions for different two-wheelers classes. The study was developed with reference to an European context focusing on Euro 3 motorcycles and Euro 2 mopeds. An experimental investigation on instantaneous speed measurements was carried out with instrumented motorcycles, considering typical urban trips in the city of Genoa. A selection of speed profiles was then performed by processing experimental values.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
X