Refine Your Search

Topic

Author

Search Results

Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

A Machine Learning Approach to Information Extraction from Cylinder Pressure Sensors

2012-04-16
2012-01-0440
As the number of actuators and sensors increases in modern combustion engines, the task of optimizing engine performance becomes increasingly complex. Efficient information processing techniques are therefore important, both for off-line calibration of engine maps, and on-line adjustments based on sensor data. In-cylinder pressure sensors are slowly spreading from laboratory use to production engines, thus making data with high temporal resolution of the combustion process available. The standard way of using the cylinder pressure data for control and diagnostics is to focus on a few important physical features extracted from the pressure trace, such as the combustion phasing CA50, the indicated mean effective pressure IMEP, and the ignition delay. These features give important information on the combustion process, but much information is lost as the information from the high-resolution pressure trace is condensed into a few key parameters.
Journal Article

A Model-Based Injection-Timing Strategy for Combustion-Timing Control

2015-04-14
2015-01-0870
The combustion timing in internal combustion engines affects the fuel consumption, in-cylinder peak pressure, engine noise and emission levels. The combination of an in-cylinder pressure sensor together with a direct injection fuel system lends itself well for cycle-to-cycle control of the combustion timing. This paper presents a method of controlling the combustion timing by the use of a cycle-to-cycle injection-timing algorithm. At each cycle the currently estimated heat-release rate is used to predict the in-cylinder pressure change due to a combustion-timing shift. The prediction is then used to obtain a cycle-to-cycle model that relates combustion timing to gross indicated mean effective pressure, max pressure and max pressure derivative. Then the injection timing that controls the combustion timing is decided by solving an optimization problem involving the model obtained.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Technical Paper

Analyzing Factors Affecting Gross Indicated Efficiency When Inlet Temperature Is Changed

2018-09-10
2018-01-1780
Observations from engine experiments indicates that the gross indicated efficiency (GIE) increases when the inlet temperature (Tinlet) is lowered. The change in Tinlet affects several important factors, such as the heat release profile (affecting heat and exhaust losses), working fluid properties, combustion efficiency and heat transfer losses. These factors all individually contributes to the resulting change in GIE. However, due to their strong dependency to temperature it is not possible to quantify the contribution from each of these parameters individually. Therefore, a simulation model in GT-power has been created and calibrated to the performed engine experiments. With simulations the temperature dependency can be separated and it becomes possible to evaluate the contribution to GIE from each factor individually. The simulation results indicate that the specific heats of the working medium are the largest contributor.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Technical Paper

CFD Investigation on Injection Strategy and Gasoline Quality Impact on In-Cylinder Temperature Distribution and Heat Transfer in PPC

2013-09-08
2013-24-0009
Recently, internal combustion engine design has been moving towards downsized, more efficient engines. One key in designing a more efficient engine is the control of heat losses, i.e., improvements of the thermodynamic cycle. Therefore, there is increasing interest in examining and documenting the heat transfer process of an internal combustion engine. A heavy-duty diesel engine was modeled with a commercial CFD code in order to examine the effects of two different gasoline fuels, and the injection strategy used, on heat transfer within the engine cylinder in a partially premixed combustion (PPC) mode. The investigation on the fuel quality and injection strategy indicates that the introduction of a pilot injection is more beneficial in order to lower heat transfer, than adjusting the fuel quality. This is due to reduced wall exposure to higher temperature gases and more equally distributed heat losses in the combustion chamber.
Technical Paper

Combined Low and High Pressure EGR for Higher Brake Efficiency with Partially Premixed Combustion

2017-10-08
2017-01-2267
The concept of Partially Premixed Combustion (PPC) in internal combustion engines has shown to yield high gross indicated efficiencies, but at the expense of gas exchange efficiencies. Most of the experimental research on partially premixed combustion has been conducted on compression ignition engines designed to operate on diesel fuel and relatively high exhaust temperatures. The partially premixed combustion concept on the other hand relies on dilution with high exhaust gas recirculation (EGR) rates to slow down the combustion which results in low exhaust temperatures, but also high mass flows over cylinder, valves, ports and manifolds. A careful design of the gas exchange system, EGR arrangement and heat exchangers is therefore of utter importance. Experiments were performed on a heavy-duty, compression ignition engine using a fuel consisting of 80 volume % 95 RON service station gasoline and 20 volume % n-heptane.
Technical Paper

Combustion Chamber Geometry Effects on the Performance of an Ethanol Fueled HCCI Engine

2008-06-23
2008-01-1656
Homogeneous Charge Compression Ignition (HCCI) combustion is limited in maximum load due to high peak pressures and excessive combustion rate. If the rate of combustion can be decreased the load range can be extended. From previous studies it has been shown that by using a deep square bowl in piston geometry the load range can be extended due to decreased heat release rates, pressure rise rates and longer combustion duration compared to a disc shaped combustion chamber. The explanation for the slower combustion was found in the turbulent flow field in the early stages of the intake stroke causing temperature stratifications throughout the charge. With larger temperature differences the combustion will be longer compared to a perfectly mixed charge with less temperature variations. The methods used for finding this explanation were high-speed cycle-resolved chemiluminescence imaging and fuel tracer planar laser induced fluorescence (PLIF), together with large eddy simulations (LES).
Technical Paper

Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

2017-10-08
2017-01-2262
Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic gasoline. The results directed particular attention to the relationship between intake temperature and combustion phasing which reflected the changing of stratification level with the injection timing. To confirm its applicability with the use of different fuels, and to investigate the effect of fuel properties on stratification formation, primary reference fuels (PRF) were tested using the same method: a start of injection sweep from -180° to -20° after top dead center with constant combustion phasing by tuning the intake temperature. The present results are further developed compared with those of our previous work, which were based on generic gasoline.
Journal Article

Cylinder Pressure Based Method for In-Cycle Pilot Misfire Detection

2019-09-09
2019-24-0017
For the reduction of emissions and combustion noise in an internal combustion diesel engine, multiple injections are normally used. A pilot injection reduces the ignition delay of the main injection and hence the combustion noise. However, normal variations of the operating conditions, component tolerances, and aging may result in the lack of combustion i.e. pilot misfire. The result is a lower indicated thermal efficiency, higher emissions, and louder combustion noise. Closed-loop combustion control techniques aim to monitor in real-time these variations and act accordingly to counteract their effect. To ensure the in-cycle controllability of the main injection, the misfire diagnosis must be performed before the start of the main injection. This paper focuses on the development and evaluation of in-cycle algorithms for the pilot misfire detection. Based on in-cylinder pressure measurements, different approaches to the design of the detectors are compared.
Journal Article

Cylinder Pressure-Based Virtual Sensor for In-Cycle Pilot Mass Estimation

2018-04-03
2018-01-1163
In this article, a virtual sensor for the estimation of the injected pilot mass in-cycle is proposed. The method provides an early estimation of the pilot mass before its combustion is finished. Furthermore, the virtual sensor can also estimate pilot masses when its combustion is incomplete. The pilot mass estimation is conducted by comparing the calculated heat release from in-cylinder pressure measurements to a model of the vaporization delay, ignition delay, and the combustion dynamics. A new statistical approach is proposed for the detection of the start of vaporization and the start of combustion. The discrete estimations, obtained at the start of vaporization and the start of combustion, are optimally combined and integrated in a Kalman Filter that estimates the pilot mass during the vaporization and combustion. The virtual sensor was programmed in a field programmable gate array (FPGA), and its performance tested in a Scania D13 Diesel engine.
Technical Paper

Cylinder to Cylinder Variation Related to Gas Injection Timing on a Dual-Fuel Engine

2019-04-02
2019-01-1162
The natural gas/diesel dual-fuel engine is an interesting technique to reduce greenhouse gas emission. A limitation of this concept is the emission of un-combusted methane. In this study we analyzed the influence of PFI gas-injection timing on cylinder to cylinder gas-distribution, and the resulting methane emissions. This was done on a 6 cylinder HD engine test bench and in a GT-power simulation of the same engine. The main variable in all tests was the timing of the intake port gas injection, placed either before, after, or during the intake stroke. It showed that injecting outside of the intake window resulted in significant variation of the amount of trapped gaseous fuel over the 6 cylinders, having a strong impact on methane emissions. Injecting outside of the intake stroke results in gas awaiting in the intake port. Both testing and simulation made clear that as a result of this, cylinder 1 leans out and cylinder 6 enriches.
Journal Article

Diesel Spray Ignition Detection and Spatial/Temporal Correction

2012-04-16
2012-01-1239
Methods for detection of the spatial position and timing of diesel ignition with improved accuracy are demonstrated in an optically accessible constant-volume chamber at engine-like pressure and temperature conditions. High-speed pressure measurement using multiple transducers, followed by triangulation correction for the speed of the pressure wave, permits identification of the autoignition spatial location and timing. Simultaneously, high-speed Schlieren and broadband chemiluminescence imaging provides validation of the pressure-based triangulation technique. The combined optical imaging and corrected pressure measurement techniques offer improved understanding of diesel ignition phenomenon. Schlieren imaging shows the onset of low-temperature (first-stage) heat release prior to high-temperature (second-stage) ignition. High-temperature ignition is marked by more rapid pressure rise and broadband chemiluminescence.
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

2015-04-14
2015-01-1260
Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.
Technical Paper

Double Compression Expansion Engine Concepts: Efficiency Analysis over a Load Range

2018-04-03
2018-01-0886
Double Compression Expansion Engine (DCEE) concepts are split-cycle concepts where the main target is to improve brake efficiency. Previous simulations work [1] suggests these concepts has a potential to significantly improve brake efficiency relative to contemporary engines. However, a high peak efficiency alone might be of limited value. This is because a vehicle must be able to operate in different conditions where the engine load requirements changes significantly. An engine’s ability to deliver high efficiency at the most frequently used load conditions is more important than peak efficiency in a rarely used load condition. The simulations done in this paper studies the efficiency at low, mid and full load for a DCEE concept proposal. Two load control strategies have been used, lambda and Miller (late intake valve closing) strategies. Also, effects from charge air cooling has also been studied.
Technical Paper

Effect of Piston Geometry on Stratification Formation in the Transition from HCCI to PPC

2018-09-10
2018-01-1800
Partially premixed combustion (PPC) is an advanced combustion strategy that has been proposed to provide higher efficiency and lower emissions than conventional compression ignition, as well as greater controllability than homogeneous charge compression ignition (HCCI). Stratification of the fuel-air mixture is the key to achieving these benefits. The injection strategy, injector-piston geometry design and fuel properties are factors commonly manipulated to adjust the stratification level. In the authors’ previous research, the effects of injection strategy and fuel properties on the stratification formation process were investigated. The results revealed that, for a direct-injection compression ignition engine, by sweeping the injection timing from −180° aTDC (after top dead center) to −20° aTDC, the sweep could be divided into three different regimes: an HCCI regime, a Transition regime and a PPC regime, based on the changing of mixture stratification conditions.
Journal Article

Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion

2009-11-02
2009-01-2668
The effects of fuel properties on the performance and emissions of an engine running in partially premixed combustion mode were investigated using nine test fuels developed in the gasoline boiling point range. The fuels covered a broad range of ignition quality and fuel chemistry. The fuels were characterized by performing a load sweep between 1 and 12 bar gross IMEP at 1000 and 1300 rpm. A heavy duty single cylinder engine from Scania was used for the experiments; the piston was not modified thus resulting in the standard compression ratio of 18:1. In order to properly run gasoline type of fuels in partially premixed combustion mode, an advanced combustion concept was developed. The concept involved using a lot of EGR, very high boost and an advanced injection strategy previously developed by the authors. By applying this concept all the fuels showed gross indicated efficiencies higher than 50% with a peak of 57% at 8 bar IMEP.
X