Refine Your Search

Topic

Author

Search Results

Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

A Catalytic NOX After-Treatment System for Heavy-Duty Trucks Using Diesel Fuel as Reducing Agent

1999-10-25
1999-01-3563
An advanced catalytic exhaust after-treatment system addresses the problem of NOX emissions from heavy-duty diesel trucks, relying on real-time catalyst modelling. The system consists of de-NOX catalysts, a device for injection of a reducing agent (diesel fuel) upstream the catalysts, and computer programmes to control the injection of the reducing agent and to model the engine and catalysts in real time. Experiments with 5 different air-assisted injectors were performed to determine the effect of injector design on the distribution of the injected diesel in the exhaust gas stream. A two-injector set-up was investigated to determine whether system efficiency could be increased without increasing the amount of catalyst or the amount of reducing agent necessary for the desired outcome. The results were verified by performing European standard transient cycle tests as well as stationary tests.
Technical Paper

A Droplet Size Investigation and Comparison Using a Novel Biomimetic Flash-Boiling Injector for AdBlue Injections

2016-10-17
2016-01-2211
Increased research is being driven by the automotive industry facing challenges, requiring to comply with both current and future emissions legislation, and to lower the fuel consumption. The reason for this legislation is to restrict the harmful pollution which every year causes 3.3 million premature deaths worldwide [1]. One factor that causes this pollution is NOx emissions. NOx emission legislation has been reduced from 8 g/kWh (Euro I) down to 0.4 g/kWh (Euro VI) and recently new legislation for ammonia slip which increase the challenge of exhaust aftertreatment with a SCR system. In order to achieve a good NOx conversion together with a low slip of ammonia, small droplets of Urea solution needs to be injected which can be rapidly evaporated and mixed into the flow of exhaust gases.
Journal Article

A Fast Crank Angle Resolved Zero-Dimensional NOx Model Implemented on a Field-Programmable Gate Array

2013-04-08
2013-01-0344
In the automotive industry, the piezo-based in-cylinder pressure sensor is getting commercialized and used in production vehicles. For example, the pressure sensor offers the opportunity to design algorithms for estimation of engine emissions, such as soot and NO , during a combustion cycle. In this paper a zero-dimensional NO model for a diesel engine is implemented that will be used in real time. The model is based on the thermal NO formation and the Zeldovich mechanism using two non-geometrical zones: burned and unburned zone. The influence of EGR on combustion temperature was modeled using a well-known thermodynamic identity where specific heat at constant pressure is included. Specific heat will vary with temperature and the gas composition. The model was implemented in LabVIEW using tools specific for an FPGA (Field-Programmable Gate Array).
Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
Technical Paper

A Physical Two-Zone NOx Model Intended for Embedded Implementation

2009-04-20
2009-01-1509
This paper offers a two-zone NOx model suitable for vehicle on-board, on-line implementation. Similar NOx modeling attempts have previously been undertaken. The hereby suggested method does however offer clear and important benefits over the previously methods, utilizing a significantly different method to handle temperature calculations within the (two) different zones avoiding iterative computation. The new method significantly improves calculation speed and, most important of all, reduces implementation complexity while still maintaining reasonable accuracy and the physical interpretation of earlier suggested methods. The equations commonly used to compute NOx emissions is also rewritten in order to suit a two-zone NOx model. An algorithm which can be used to compute NOx emissions is presented and the intended contribution of the paper is a NOx model, implementation feasible for an embedded system, e.g. embedded processor or embedded electronic hardware (FPGA).
Technical Paper

A Predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-10-16
2006-01-3329
A previously presented robust and fast diagnostic NOx model was modified into a predictive model. This was done by using simple yet physically-based models for fuel injection, ignition delay, premixed heat release rate and diffusion combustion heat release rate. The model can be used both for traditional high temperature combustion and for high-EGR low temperature combustion. It was possible to maintain a high accuracy and calculation speed of the NOx model itself. The root mean square of the relative model error is 16 % and the calculation speed is around one second on a PC. Combustion characteristics such as ignition delay, CA50 and the general shape of the heat release rate are well predicted by the combustion model. The model is aimed at real time NOx calculation and optimization in a vehicle on the road.
Technical Paper

A Study on In-Cycle Control of NOx Using Injection Strategy with a Fast Cylinder Pressure Based Emission Model as Feedback

2013-10-14
2013-01-2603
The emission control in heavy-duty vehicles today is based on predefined injection strategies and after-treatment systems such as SCR (selective catalytic reduction) and DPF (diesel particulate filter). State-of-the-art engine control is presently based on cycle-to-cycle resolution. The introduction of the crank angle resolved pressure measurement, from a piezo-based pressure sensor, enables the possibility to control the fuel injection based on combustion feedback while the combustion is occurring. In this paper a study is presented on the possibility to control NOx (nitrogen oxides) formation with a crank angle resolved NOx estimator as feedback. The estimator and the injection control are implemented on an FPGA (Field-Programmable Gate Array) to manage the inherent time constraints. The FPGA is integrated with the rest of the engine control system for injection control and measurement.
Technical Paper

An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion

2010-10-25
2010-01-2198
A Scania 13 1 engine modified for single cylinder operations was run using nine fuels in the boiling point range of gasoline, but very different octane number, together with PRF20 and MK1-diesel. The eleven fuels were tested in a load sweep between 5 and 26 bar gross IMEP at 1250 rpm and also at idle (2.5 bar IMEP, 600 rpm). The boost level was proportional to the load while the inlet temperature was held constant at 303 K. For each fuel the load sweep was terminated if the ignitibility limit was reached. A lower load limit of 15 and 10 bar gross IMEP was found with fuels having an octane number range of 93-100 and 80-89 respectively, while fuels with an octane number below 70 were able to run through the whole load range including idle. A careful selection of boost pressure and EGR in the previously specified load range allowed achieving a gross indicated efficiency between 52 and 55% while NOx ranged between 0.1 and 0.5 g/kWh.
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Technical Paper

Characterization of Partially Premixed Combustion

2006-10-16
2006-01-3412
Partially Premixed Combustion (PPC) provides the potential of simultaneous reduction of NOx and soot for diesel engines. This work attempts to characterize the operating range and conditions required for PPC. The characterization is based on the evaluation of emission and in-cylinder measurement data of engine experiments. It is shown that the combination of low compression ratio, high EGR rate and engine operation close to stoichiometric conditions enables simultaneous NOx and soot reduction at loads of 8bar, 12bar, and 15bar IMEP gross. The departure from the conventional NOx-soot trade-off curve has to be paid with a decline in combustion efficiency and a rise in HC and CO emissions. It is shown that the low soot levels of PPC come along with long ignition delay and low combustion temperature. A further result of this work is that higher inlet pressure broadens the operating range of Partially Premixed Combustion.
Technical Paper

Comparison of Laser-Extinction and Natural Luminosity Measurements for Soot Probing in Diesel Optical Engines

2016-10-17
2016-01-2159
Soot emissions from diesel internal combustion engines are strictly regulated nowadays. Laser extinction measurement (LEM) and natural luminosity (NL) of sooty flames are commonly applied to study soot. LEM measures soot along the laser beam path and it can probe soot regardless of temperature. NL integrates the whole field of view and relies on soot temperature. In this work, a comparison of simultaneously recorded LEM and NL data has been performed in a heavy-duty optical engine. A 685 nm laser beam is used for LEM. The laser was modulated at 63 kHz, which facilitated subtraction of the background NL signal from the raw LEM data. By Beer-Lambert’s law, KL factor can be calculated and used as a metric to describe soot measurements. A compensation of transmitted laser intensity fluctuation and soot deposits on optical windows has been performed in this work.
Journal Article

Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions

2013-04-08
2013-01-0902
Gasoline partially premixed combustion (PPC) has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions. The problem is the ignitability at low load and idle operating conditions. In a previous study it was shown that it is possible to use NVO to improve combustion stability and combustion efficiency at operating conditions where available boosted air is assumed to be limited. NVO has the disadvantage of low net indicated efficiency due to heat losses from recompressions of the hot residual gases. An alternative to NVO is the rebreathing valve strategy where the exhaust valves are reopened during the intake stroke. The net indicated efficiency is expected to be higher with the rebreathing strategy but the question is if similar improvements in combustion stability can be achieved with rebreathing as with NVO.
Technical Paper

Control-Oriented Modeling of Soot Emissions in Gasoline Partially Premixed Combustion with Pilot Injection

2017-03-28
2017-01-0511
In this paper, a control-oriented soot model was developed for real-time soot prediction and combustion condition optimization in a gasoline Partially Premixed Combustion (PPC) Engine. PPC is a promising combustion concept that achieves high efficiency, low soot and NOx emissions simultaneously. However, soot emissions were found to be significantly increased with high EGR and pilot injection, therefore a predictive soot model is needed for PPC engine control. The sensitivity of soot emissions to injection events and late-cycle heat release was investigated on a multi-cylinder heavy duty gasoline PPC engine, which indicated main impact factors during soot formation and oxidation processes. The Hiroyasu empirical model was modified according to the sensitivity results, which indicated main influences during soot formation and oxidation processes. By introducing additional compensation factors, this model can be used to predict soot emissions under pilot injection.
Journal Article

Diesel Spray Ignition Detection and Spatial/Temporal Correction

2012-04-16
2012-01-1239
Methods for detection of the spatial position and timing of diesel ignition with improved accuracy are demonstrated in an optically accessible constant-volume chamber at engine-like pressure and temperature conditions. High-speed pressure measurement using multiple transducers, followed by triangulation correction for the speed of the pressure wave, permits identification of the autoignition spatial location and timing. Simultaneously, high-speed Schlieren and broadband chemiluminescence imaging provides validation of the pressure-based triangulation technique. The combined optical imaging and corrected pressure measurement techniques offer improved understanding of diesel ignition phenomenon. Schlieren imaging shows the onset of low-temperature (first-stage) heat release prior to high-temperature (second-stage) ignition. High-temperature ignition is marked by more rapid pressure rise and broadband chemiluminescence.
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

2015-04-14
2015-01-1260
Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.
Technical Paper

Effect of Piston Geometry on Stratification Formation in the Transition from HCCI to PPC

2018-09-10
2018-01-1800
Partially premixed combustion (PPC) is an advanced combustion strategy that has been proposed to provide higher efficiency and lower emissions than conventional compression ignition, as well as greater controllability than homogeneous charge compression ignition (HCCI). Stratification of the fuel-air mixture is the key to achieving these benefits. The injection strategy, injector-piston geometry design and fuel properties are factors commonly manipulated to adjust the stratification level. In the authors’ previous research, the effects of injection strategy and fuel properties on the stratification formation process were investigated. The results revealed that, for a direct-injection compression ignition engine, by sweeping the injection timing from −180° aTDC (after top dead center) to −20° aTDC, the sweep could be divided into three different regimes: an HCCI regime, a Transition regime and a PPC regime, based on the changing of mixture stratification conditions.
Technical Paper

Effect of Pre-Chamber Volume and Nozzle Diameter on Pre-Chamber Ignition in Heavy Duty Natural Gas Engines

2015-04-14
2015-01-0867
It has previously been shown by the authors that the pre-chamber ignition technique operating with fuel-rich pre-chamber combustion strategy is a very effective means of extending the lean limit of combustion with excess air in heavy duty natural gas engines in order to improve indicated efficiency and reduce emissions. This article presents a study of the influence of pre-chamber volume and nozzle diameter on the resultant ignition characteristics. The two parameters varied are the ratio of pre-chamber volume to engine's clearance volume and the ratio of total area of connecting nozzle to the pre-chamber volume. Each parameter is varied in 3 steps hence forming a 3 by 3 test matrix. The experiments are performed on a single cylinder 2L engine fitted with a custom made pre-chamber capable of spark ignition, fuel injection and pressure measurement.
Journal Article

Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion

2009-11-02
2009-01-2668
The effects of fuel properties on the performance and emissions of an engine running in partially premixed combustion mode were investigated using nine test fuels developed in the gasoline boiling point range. The fuels covered a broad range of ignition quality and fuel chemistry. The fuels were characterized by performing a load sweep between 1 and 12 bar gross IMEP at 1000 and 1300 rpm. A heavy duty single cylinder engine from Scania was used for the experiments; the piston was not modified thus resulting in the standard compression ratio of 18:1. In order to properly run gasoline type of fuels in partially premixed combustion mode, an advanced combustion concept was developed. The concept involved using a lot of EGR, very high boost and an advanced injection strategy previously developed by the authors. By applying this concept all the fuels showed gross indicated efficiencies higher than 50% with a peak of 57% at 8 bar IMEP.
Technical Paper

Effects of In-Cylinder Flow Simplifications on Turbulent Mixing at Varying Injection Timings in a Piston Bowl PPC Engine

2019-04-02
2019-01-0220
In computational fluid dynamic simulations of partially premixed combustion engines it is common to find simplifications of the in cylinder flow conditions in order to save computational cost. One common simplification is to start the simulation at the moment of intake valve closing with an assumed initial flow condition, rather than making a full scavenging simulation. Another common simplification is the periodic sector assumption, limiting all sector cuts of the full cylinder to be identical periodic copies of each other. This work studies how such flow simplifications affect the spray injection and in turn the fuel/air mixing at different injection timings. Focus is put on the stratification of fuel concentration and gas temperature due to interaction of the spray, turbulence and piston geometry. The investigated engine setup consists of a light duty engine with a piston bowl and a five-hole injector.
X