Refine Your Search

Topic

Author

Search Results

Technical Paper

1D Transient Thermal Model of an Automotive Electric Engine Cooling Fan Motor

2016-04-05
2016-01-0214
For the thermal management of an automobile, the induced airflow becomes necessary to enable the sufficient heat transfer with ambient. In this way, the components work within the designed temperature limit. It is the engine-cooling fan that enables the induced airflow. There are two types of engine-cooling fan, one that is driven by engine itself and the other one is electrically driven. Due to ease in handling, reduced power consumption, improved emission condition, electrically operated fan is becoming increasingly popular compared to engine driven fan. The prime mover for electric engine cooling fan is DC motor. Malfunction of DC motor due to overheating will lead to engine over heat, Poor HVAC performance, overheating of other critical components in engine bay. Based upon the real world driving condition, 1D transient thermal model of engine cooling fan motor is developed. This transient model is able to predict the temperature of rotor and casing with and without holes.
Technical Paper

A Case Study on Durability Analysis of Automotive Lower Control Arm Using Self Transducer Approach

2018-04-03
2018-01-1208
A competitive market and shrinking product development cycle have forced automotive companies to move from conventional testing methods to virtual simulation techniques. Virtual durability simulation of any component requires determination of loads acting on the structure when tested on the proving ground. In conventional method wheel force transducers are used to extract loads at wheel center. Extracted wheel center forces are used to derive component loads through multi-body simulation. Another conventional approach is to use force transducers mounted directly on the component joineries where load needs to be extracted. Both the methods are costly and time-consuming. Sometimes it is not feasible to place a load cell in the system to measure hard point loads because of its complexities. In that case, it would be advantageous to use structure itself as a load transducer by strain gauging the component and use those strain values to extract hard point loads in virtual simulation.
Technical Paper

A Simple Mechanism for AC Compressor Operation

2013-11-27
2013-01-2879
One of the most essential components of automotive HVAC system is compressor. In a vehicle it is directly mounted on the engine. It derives power from the engine feed system to keep refrigerant moving in the HVAC system of the vehicle. It is also essential to complete the vapor compression cycle. During the operation, it causes considerable load on the engine and thus results in lower fuel efficiency and higher pollution. There are several types of compressors available globally. According to construction it can be classified as reciprocating piston type, scroll type and rotary vane type. The reciprocating piston types of compressors are further classified as fixed displacement and variable displacement. Normally the fixed displacement compressors have good idling cooling performance, but it increases the load on the engine. To reduce the load on the engine and to have good idling cooling performance, generally a variable displacement compressor is used.
Technical Paper

A Supervisory Learning Based Two-Wheeler Drive Pattern

2015-04-14
2015-01-0221
The life of a two-wheeler and its parts depend much on its usage during its years of running. The quality of its parts determine the life and efficiency; however the handling of the two-wheeler also plays a major role in estimating it's life and other performance parameters. Hence, it is beneficial to have an efficient system which enhances the life of a two-wheeler and also gives better mileage. This paper constitutes an efficient drive pattern system which addresses the above. This system consists of two main parts: the data collection system and an Android-based mobile application which runs on a mobile phone. The data collection system collects data from various sensors on the vehicle and then the data is processed and sent to the mobile phone of the rider during the run time of the two-wheeler. The application uses this data to depict useful information like drive pattern and various indicators.
Technical Paper

Aggressive Catalyst Heating Strategy Using Advanced Mixture Formation and Combustion Timing Techniques in a GDI Engine

2021-09-22
2021-26-0185
Precise control over mixture formation withhigh fuel pressure and multiple injections allows Gasoline Direct Injection (GDI) engines to be operated satisfactorily at extreme conditions wherePort Fuel Injection (PFI) engines wouldnormally struggle due to combustion instability issues. Catalyst heating phase is one such important condition which is initiated after a cold engine start to improve the effectiveness of the three-way catalyst (TWC). For a given TWC specification, fast light-offof TWC is achieved in the catalyst heating phase by increasing the exhaust gas temperature with higher exhaust mass flow. The duration of this phase must be as short as possible, as it is a trade-off between achieving sufficient TWC light off performance and fuel efficiency.
Technical Paper

An Alternative Method to Improve the CFD Predictions for Vehicle Front End Flow

2015-01-14
2015-26-0199
In vehicle Front End Flow (FEF) analysis, the basic objective is to predict the mass flow/velocity of air at radiator inlet with constant fan rotation. In general, the Multiple Reference Frame (MRF) model is used to model the fan. The flow velocity distribution at radiator inlet due to fan rotation should be uniform in circumferential direction whereas, it should vary in radial direction depending upon the blade geometry. However, the drawback with MRF model is that, it gives higher velocities near radiator inlet at regions corresponding to the fan blades and lower velocities at other regions, which is not realistic. This issue is more predominant when the vehicle is at low speeds or when radiator is placed at mid or back of the vehicle or the fan is having less number of blades. In order to nullify this uneven velocity distribution at radiator inlet, Mixing Plane (MP) approach was used in addition to the MRF model.
Technical Paper

CAE Prediction and Test Correlation for Tractor Roll-over Protective Structure (ROPS)

2015-04-14
2015-01-1476
Roll-over protective structures (ROPS) are safety devices which provide a safe environment for the tractor operator during an accidental rollover. The ROPS must pass either a dynamic or static testing sequence or both in accordance with SAE J2194. These tests examine the performance of ROPS to withstand a sequence of loadings and to see if the clearance zone around the operator station remains intact in the event of an overturn. In order to shorten the time and reduce the cost of new product development, non-linear finite element (FE) analysis is practiced routinely in ROPS design and development. By correlating the simulation with the results obtained from testing a prototype validates the CAE model and its assumptions. The FE analysis follows SAE procedure J2194 for testing the performance of ROPS. The Abaqus version 6.12 finite element software is used in the analysis, which includes the geometric, contact and material nonlinear options.
Technical Paper

Correlation between Virtual and Physical Test for Offset Deformable Barrier Crash for SUV

2011-01-19
2011-26-0091
In the present age automotive manufacturers are putting their effort to reduce product cycle time and product cost. This has been possible with the help of Computer Aided Engineering (CAE). CAE is playing vital role in design and develop of new products as well as up gradation of existing one to meet new safety regulations and customer requirements. It has become increasingly accepted that use of well-developed, CAE models present the best approach for upfront prediction of vehicle behaviour. The ability to simply predict trends is no longer acceptable. Meaningful results can be derived, and projections made, from the CAE model, only if the CAE results are correlated against physical tests. Correlation between Simulation and Physical test is key, to build confidence on product development with virtual validation. This paper discusses the correlation between the CAE and Physical Test for offset deformable barrier crash for 4 Wheel Drive (4WD) Sports Utility Vehicle (SUV) vehicle.
Technical Paper

Correlation of Test with CAE of Dynamic Strains on Transmission Housing for 4WD Automotive Powertrain

2010-04-12
2010-01-0497
Reducing the vibrations in the powertrain is one of the prime necessities in today's automobiles from NVH and strength perspectives. The necessity of 4×4 powertrain is increasing for better control on normal road and off-road vehicles. This leads to bulky powertrains. The vehicle speeds are increasing, that requires engines to run at higher speeds. Also to save on material costs and improve on fuel economy there is a need for optimizing the mass of the engine/vehicle. The reduced stiffness and higher speeds lead to increased noise and vibrations. One more challenge a powertrain design engineer has to face during design of its transmission housings is the bending / torsional mode vibrations of powertrain assembly. This aggravates other concerns such as shift lever vibrations, shift lever rattle, rise in in-cab noise, generation of boom noise at certain speeds, etc. Hence, reducing vibrations becomes an important and difficult aspect in design of an automobile.
Technical Paper

Deriving the Compressed Accelerated Test Cycle from Measured Road Load Data

2012-04-16
2012-01-0063
Validation of vehicle structure is at the core of reduction of product development time. Robust and accelerated validation becomes an important task. In service the vehicle is subjected to variable loads. These act upon the components that originate from road roughness, manoeuvres and powertrain loads. Majority of the body in white and chassis structural failures are caused due to vertical loading. Measured road load data in test track have variable amplitude histories. These histories often contain a large percentage of small amplitude cycles which are non damaging. This paper describes a systematic approach to derive the compressed load cycle from the measured road load data in order to produce representative and meaningful yet economical load cycle for fatigue simulation. In-house flow was developed to derive the compressed load time history.
Technical Paper

Development of Common Rail Engine for LCV BS III and a Step Towards BS IV Emission Compliance

2011-01-19
2011-26-0032
This work discusses about the emission development of a 4 cylinder inline 3.3 liter CRDe to meet BS III emission norms applicable to 3.5 Ton and above category and upgradable to BS IV emission by suitable after treatment. This engine is developed from a 3.2l mechanical pump engine. During development the focus was on the usage of higher swept volume, selection of engine hardware like piston bowl, turbocharger, injectors and optimization of the injection parameters. A cost-effective solution for meeting the BS III norms in the LCV category without application of EGR and exhaust after treatment even though there is 15% increase of the power rating and 10% increase in Peak torque of the engine. Injection parameters like injection timing, injection quantity and pilot injection were optimized to meet the emission target.
Technical Paper

Development of Hydrogen Powered Three Wheeler Engine

2013-01-09
2013-26-0002
This article is focused on the development of hydrogen fuelled engine with detailed exposure on its derivation from base Compressed Natural Gas (CNG) engine to discuss the phenomenon on backfiring, control strategies (to avoid knocking and backfiring) and its performance, emission characteristics. In this work, timed manifold injection system was developed to have efficient control over the fuel supply. To achieve the best performance and emission out of the engine, governing parameter like injector pulse width and ignition timing were optimized at full load, part load and idling. For comparison of the results with the same engine experiments were also conducted with base fuel CNG and gasoline using the conventional fuel supply system. It was experimentally observed that engine when fuelled with Hydrogen (H2) produces less maximum power compared to CNG and gasoline.
Technical Paper

Development of Indian Digital Simulation Model for Vehicle Ergonomic Evaluations

2016-04-05
2016-01-1431
Virtual assessment of an occupant postural ergonomics has become an essential part of vehicle development process. To design vehicle for different market is one of the primary reason for manufacturers using digital tools to address the specific needs of the target market including cultural background, road and traffic conditions. RAMSIS is a widely used software for creating digital human models (DHM) of different target population which allows manufacturers to assess design with unique customer requirements in product design. Defining these requirements with RAMSIS human module helped development team to accurately define occupant targets such as occupant space, visibility and reachability etc. Occupant behavior and usage scenario are factors which are unique to target market and they influence the occupant posture and usage pattern inside the vehicle. This paper defines the methodology towards the development of Indian Digital Simulation model for vehicle ergonomic evaluations.
Technical Paper

Development of a Free Motion Headform Impactor

2011-01-19
2011-26-0105
The development of interior fittings of passenger car to minimize the injuries to the head of the occupants requires mandatory compliance to the regulations in Europe and USA. In European regulation ECE R21 and similarly in FMVSS 201 the test on the instrument panel area suffices. The FMVSS 201u requirements in USA require also a free motion headform to be impacted on additional areas of the A-Pillar trim, sun visors, grab handles, and seat belt upper anchorage points of the B-Pillar too. Free Motion Headform Impactors (FMHI) are costly equipment. The FMVSS 201u [1] test is not conducted by any test agency in India as yet. Paper deals with the development of the head form impactor to fire the headform at angular positions in the vehicle and the test results have enabled the development of the vehicle interiors to enhance the safety of vehicles in crash situations.
Technical Paper

Diagnosis and Elimination of Vehicle Shudder in a Sports Utility Vehicle

2013-01-09
2013-26-0090
Ground clearance plays an important role in Sports Utility Vehicles (SUV). Designers are good in designing their own systems but when it comes to integration of systems, the impact of one system on others and cascading effects become the major problems in full vehicle development. The test vehicle is a monocoque construction with power train in transverse (east-west) direction. Vehicle shudder is observed in lateral direction exciting the steering column, floor during the low gear power train run up in Wide Open Throttle (WOT) condition. The shudder is felt predominantly on the front half of the vehicle. Being a low frequency phenomenon with high energy it becomes critical and the phenomenon is easily perceivable by passenger. The paper discusses the measurement and analysis procedures to identify the root cause of shudder. Different modifications are tried out based on the analysis and an optimum solution is selected.
Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Engine Modelling with Smart Online DoE

2024-01-16
2024-26-0338
The implementation of TREM/CEV 5 emission norms on farm equipment will bring in cost pressure due to the need for exhaust after treatment systems. This cost increase needs to be reduced by bringing in more efficient and effective processes to shorten the development phase and to provide better fuel efficiencies. In this work ETAS ASCMO Online DoE with Constraint Modelling (ODCM) was applied to execute smart online DoE on a new common rail diesel engine with EGR, whose exact bounds of operation was not available. A Global test plan with ASCMO Static was created without much focus on detailed constraints of engine operation, other than the full load curve. The parameters which were selected were Speed, Torque, Rail Pressure, Main Timing, EGR Valve Position, Pilot Separation and Quantity and Post Quantity and Separation. For these parameters, the safe operating bounds were not available. This ASCMO Static test plan is automated and executed on engine test cell with ETAS INCAFlow.
Technical Paper

Evaluation and Comparative Study of ValveTrain Layouts with Different Rocker Ratio

2014-10-13
2014-01-2877
The Valve Train system is an integral part of any engine and the impact of its design is very crucial, particularly in high speed engines. Maintaining the required valve timing throught the engine operating speed and longer component life are the two important parameters which drive current valvetrain designs. An engine ValveTrain system designed for a valve lift of 7mm is to be modified for an increased valve lift of 8mm. A study was conducted to understand which design parameters are to be changed /modified to make this possible. For this study, the valvetrain of an air-cooled motorcycle engine is taken up. The valvetrain arrangement was an Over Head Camshaft (OHC) design with a Roller-Follower. A 1D commercially available numerical code was used to simulate the kinematics and dynamics of the system.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Experiences in improving the Low end performance of a Multi Purpose Vehicle (MPV) equipped with a common rail Diesel engine.

2009-12-13
2009-28-0008
Continually increasing customer demands and legislative Requirements regarding fuel economy, emissions, Performance, drive ability and comfort need to be met by every OEM's developing vehicles worldwide. There is a serious pressure to reduce CO2 emission from automotive application which contributes to around 15.9% of the total CO2 production based on the Surveys done time to time. In a developing market like India, many foreign players are entering with lots of option for offering to this market. The parameters of prime importance here are fuel efficiency with good drive ability and at the same time affordable price. Diesel engines are finding these benefits and attracting the buyer over its counterpart (Gasoline). The road condition and the driving pattern in India compared with developed countries differ to a major extent. In India, the Low speed uses are predominating in Cities and in Ghats.
X