Refine Your Search

Topic

Search Results

Technical Paper

A Method of Predicting Dent Resistance of Automobile Body Panels

1995-02-01
950574
Optimizing the design of automobile outer panels for weight reductions requires a consideration of stiffness and dent resistance. This paper presents a finite element analysis method for predicting the dent resistance of automobile body panels. The method is based on elastoplasticity analysis and nonlinear contact analysis. The analysis shows that dent resistance is greatly influenced not only by the stress-strain curve of the formed panel but also by the residual stress in the panel. An increase in yield stress improves dent resistance. The computed results obtained with this method compare favorably with experimental data, thereby validating this approach.
Technical Paper

A Study on Adaptive Automatic Transmission Control

1992-06-07
925223
Various parameters for the shift scheduling of an automatic transmission were examined to detect more accurate road conditions, vehicle running conditions, and the driver's intention. The parameters include the vehicle speed, the gradient of a road, an index to curves in the road, and so on. The fuzzy logic was employed to incorporate these parameters into the shift scheduling control. The vehicle running tests have shown that the use of many parameters and the fuzzy logic was effective on reducing the frequencies of the transmission gear shift and the driver's brake operation in such road conditions as usually seen in mountainous areas
Technical Paper

A Study on a Simulation of a Head Form Impact Against Plastic Plates

1992-09-01
922085
A Finite Element Method (FEM) simulation was conducted to predict energy-absorbing characteristics in an impact of a head form against plastic plates. Static and dynamic material tests were conducted in order to determine material properties of the plastics. The properties were applied in an explicit FEM code. The FEM results were validated through the impact tests by the head form against the same plastic plates. It was proved that the FEM could simulate the test result well, when the precise material properties were introduced in the simulation. The method can be expected to be available to predict energy-absorbing characteristics during the impact by the head form against automobile plastic components such as shell portions of instrument panels.
Technical Paper

Active Control for Body Vibration of F.W.D. Car

1986-03-01
860552
A Vehicle Vibration Control System by Active Control has been developed. The experimental results using a 4-cylinder gasoline engine installed in a car showed that at the position of the driver's seat, the acceleration of the vibration was reduced by 16 dB. This system operates stably and at low cost because of having a feedforward system, so many applications can be expected in the near future as methods for vehicle vibration reduction.
Technical Paper

Analysis of Vehicle Wind Throb Using CFD and Flow Visualization

1997-02-24
970407
Passenger cars with sunroofs sometimes experience a low frequency pulsation noise called “wind throb” when traveling with the roof open. This “wind throb” should be suppressed because it is an unpleasant noise which can adversely affect the acoustic environment inside a car. In this paper, 3-dimensional numerical flow analysis is applied around a car body to investigate the wind throb phenomenon. The computational scheme and the modeling method of the car body is first described. A flow visualization test in a water tunnel was completed for the simple car body shape to compare against the numerical procedure. The numerical and the visualized results compared well and the numerical simulation method employed was considered to be a reliable tool to analyze the wind throb phenomenon. Calculated results of pressure and vorticity distribution in the sunroof opening were analyzed with the spectrum of pressure fluctuation at the sunroof opening with and without a deflector.
Technical Paper

Booming noise analysis of passenger car using integrated approach of CAT/CAE

2000-06-12
2000-05-0293
The need of lightweight vehicle design is motivated by the recent global trend of less fuel consumption and lower emission in vehicle. However in NVH development of vehicle, it becomes more difficult for the lightweight vehicle to reach low vibro-acoustic sensitivity than, for the heavy weight one to do so. Inthis environment, this paper describes about the practical finite element (FE) modeling of vehicle structure and acoustics, in order to predict "boom" response to powertrain excitation. The FE modeling process through validation and updating with experimental mode makes, the accumulation of considerable expertise for improving prediction accuracy, possible. FE analysis based on this modeling process is so useful for predicting "boom" levels up to 200 Hz. Using the result of FE analysis, structural optimization is executed in order to improve "boom" level of 80 Hz.
Technical Paper

Ceramic Tappets Cast in Aluminum Alloy for Diesel Engines

1990-02-01
900403
The authors developed, for use in diesel engines, ceramic tappets cast in aluminum alloy that drastically improved wear resistance and valve train dynamics. The ceramic tappets consist of two parts: a ceramic head, which contacts the cam and push rod, and a tappet body made of aluminum alloy. Concerning the ceramic, silicon nitride was the best material of the three ceramics evaluated in the tests and the sliding surface, in contact with the cam and push rod, was left unground. As for the aluminum alloy, hyper-eutectic aluminum-silicon alloy with a controlled pro-eutectic silicon size was selected. A reliability analysis using the finite-element method (FEM) was also made on the structure of the ceramic tappet for enhanced durability and reliability. The combination of this tappet and a cam made of hardened ductile cast iron, hardened steel, or chilled cast iron, respectively exhibits excellent wear resistance.
Technical Paper

Contribution of Fuel Transport Lag and Statistical Perturbation in Combustion to Oscillation of SI Engine Speed at Idle

1987-02-01
870545
Periodic oscillations of the speed of SI engine with MPI system at idle observed in the steady state and in the converging process after the inditial increase of load were investigated. These non-steady phenomena are the self-excitations of the closed-loop system induced by the lag factors inherent to the system such as the manifold charging delay and the fuel metering and transport lag and by the nonlinear factors such as the sensitivity of the torque to the equivalence ratio. But, even in the cases where the lags and the nonlinearity are insufficient, continuous oscillations with large amplitude are observed in the actual engine. They can be explained by introducing the concept of external perturbation induced by the combustion fluctuation. Disturbance prevents the phase lag in the system from converging, resulting in the continuation of oscillation.
Technical Paper

Development of Damping SMC and Its Application as Material for a Rockercover

1996-02-01
960146
When replacing a metal engine part with plastic, it is necessary to regard vibration damping as one of the important factors in terms of noise reduction as well as strength and heat resistance as being characteristics of the material. Plastics are far better for vibration damping than steel or aluminum, but this property is reduced by the addition of glassfiber-reinforced or high heat-resisting resins. We have taken notice of SMC (Sheet Molding Compound) which has the excellent strength and heat resistance properties and studied it in order to increase its vibration damping property. Since organic polymers show the peak value for vibration damping performance in the vicinity of the glass transition temperature (Tg), we studied a method to shift the Tg near the operating temperature region in order to improve the vibration damping property.
Technical Paper

Development of Silicon Nitride Turbine Rotors

1985-02-01
850313
This paper describes fabrication of silicon nitride radial turbine wheels 90 mm in diameter. The wheels were hot spin tested without failure at turbine tip speeds up to 600 m/s. The reliability of shrink fit of metal shaft and ceramic wheel was demonstrated in a turbocharger test. Results of the hot spin test are discussed in relation to the nature of defects and compared with the analytic prediction using Weibull statistics and finite element analysis.
Technical Paper

Development of a New Multi-Mode Variable Valve Timing Engine

1993-03-01
930878
The 4-stroke SI engine offers better performance if its valve events can be varied depending on the operating conditions. Some engines in production are therefore incorporated with variable valve timing (VVT) mechanisms. All of such mechanisms available today however are for two-mode change-over between low-and high-speed operations. To achieve even better output and fuel economy, a new multi-mode VVT mechanism has been developed, featured by a unique hydraulic device for three-mode change-over as follows: Deactivate both intake and exhaust valves Select low-speed cam with moderate lifts and short durations Select high-speed cam with high lifts and long durations This mechanism enables shutting off unnecessary cylinders during low-speed cruise, or select optimum valve events during WOT acceleration over the entire engine speed range.
Technical Paper

Development of a New Torsional Rubber Damper for Diesel Engines

1993-05-01
931308
It is well-known that double-mass torsional rubber dampers which have two masses and springs in parallel are effective for controlling torsional vibration characteristics over a wide range of engine speed. On the occasion of reliability estimation of the rubber dampers, it is important to consider generation of heat in the rubber due to torsional vibration. By predicting generation of heat at the designing stage, optimum design of the torsional rubber dampers can be achieved. By development and application of this prediction method, a new type double-mass damper was developed. It provided higher vibration control characteristics and reliability than conventional viscous dampers, and also it provided advantages in terms of noise, productivity and weight.
Technical Paper

Development of the Stainless Cast-Steel Exhaust Manifold

1993-03-01
930621
At Mitsubishi Motors, a thin-walled exhaust manifold, made of stainless cast-steel, has been developed with the aim of achieving higher heat-resisting reliability as well as weight reduction. The new exhaust manifold is made of ferritic stainless cast-steel, employing an advanced vacuum casting (CLAS). Its geometry was designed using finite element analysis and its durability was confirmed by testing both on various test devices and on a vehicle. The exhaust manifolds has been adopted on a production engine model and has proven the following advantages over a conventional cast-iron ones; excellent heat resistance. weight reduction of over 20%. possible exhaust emission reduction as a result of lower heat-capacity of the exhaust manifold.
Technical Paper

Development of thermoplastic elastomeric vacuum hose for engine control

2000-06-12
2000-05-0150
Vulcanized rubber hoses are difficult to recycle and have a complicated manufacturing process. Recently, we have developed the vacuum hose for engine control out of thermoplastic elastomers. As a result of this development, scrap material from the manufacturing process can be recycled and, in addition, about a 30 percent weight reduction and a 20 percent cost reduction are achievable by virtue of the lower specific gravity and by the more simplified manufacturing process. In order to assess the feasibility of using thermoplastic elastomers for vacuum hoses, we developed a heat aging simulation test method. This was achieved by first investigating the actual vehicle environmental conditions of currently used vacuum hoses by retrieving and examining these hoses from used vehicles. We then extrapolated what the condition of such hoses would be after being subjected to heat aging for 200,000 km of service in an actual vehicle, and applied this calculation to our newly developed hoses.
Technical Paper

Hot-Gas Spin Testing of Ceramic Turbine Rotor at TIT 1300° C

1989-02-01
890427
The high-temperature durability of 85 mm tip diameter silicon nitride ceramic radial turbine rotors was evaluated with a hot gas spin test rig. The rotors withstood up to a turbine tip speed of 700 m/s at TIT of 1300°C under partially loaded conditions and 570 m/s at TIT of 1300°C under fully loaded conditions, respectively. The material of the rotors was a post-HIPed silicon nitride. The basic fatigue properties of the material were measured at high temperatures. In the hot gas spin test, the temperature and stress distributions at the turbine blade were calculated with a finite element method. The results of the hot-gas spin test are discussed by means of a failure prediction analysis on the basis of the Weibull statistics.
Technical Paper

Interior Noise evaluation of Electric Vehicle: Noise source contribution analysis

2011-05-17
2011-39-7229
Global environment protection, Co2 emission reduction and so on, is an important problem in automotive industry. An Electric Vehicle (EV) production is one of policies. Co2 emission of EV is lower than Internal Combustion Engine (ICE), petrol and diesel engine. On the other hand, customer's needs for the comfort on driving increase year after year. So it's an important factor for new car performance. Generally speaking, it's thought that the noise and vibration performance of EV have the better of ICE performance. However the aerodynamic noise and road noise contribution for interior noise in EV rise in comparison with ICE, and moreover the sound quality change by new noise component of the motor noise. Therefore new sound evaluation method is needed for EV. So this paper demonstrates each noise component contribution in EV by new noise separation technology, and show the comparison result with EV and ICE.
Technical Paper

Powertrain Model Selection and Reduction for Real Time Control Algorithm Design and Verification in Rapid Controller Prototyping Environment

2010-04-12
2010-01-0236
New systems or functionalities have been rapidly introduced for fuel economy improvement. Active vibration suppression has also been introduced. Control algorithm is required to be verified in real time environment to develop controller functionality in a short term. Required frequency domain property concept is proposed for representation of target phenomena with reduced models. It is shown how to select or reduce engine, transmission and vehicle model based on the concept. Engine torque profile which has harmonics of engine rotation is required for engine start, take-off from stand still, noise & vibration suppression and misfire detection for OBD simulation. An engine model which generates torque profile synchronous to crank angle was introduced and modified for real time simulation environment where load changes dynamically. Selected models and control algorithms were modified for real time environment and implemented into two linked universal controllers.
Technical Paper

Reduction of Cooling Fan Noise Caused by Crankshaft Torsional Vibration

1993-05-01
931334
Improvements of interior and exterior noise are important targets in vehicle engineering. There are many reports concerning the reduction of radiator cooling fan noise. But, most of those reports are associated with studies of air flow noise. A radiator cooling fan connected to a crankshaft occasionally radiates structure-borne noise in addition to air flow noise. This structure-borne noise is caused by fan blade vibration excited by torsional vibration of a crankshaft. In this paper, we surveyed the mechanism of the structure-borne noise and discussed some methods for the noise reduction. And, as a result, we developed one of the noise reduction technique aiming at isolation of crankshaft vibration by modifying viscosity of the oil in a fan clutch.
Technical Paper

Reduction of Idling Rattle Noise in Trucks

1991-05-01
911044
Optimization of the clutch torsional characteristics is one of the effective methods to reduce the idling rattle noise. Many researches on th.s problem have been reported, but only few of them give sufficient consideration to the drag torque applied to the clutch disc during engine idling. This paper pays attention to the drag torque and discusses the mechanism of idling rattle noise by using vehicle testing, bench test with rotating torsional exciter and computer simulation. Reauction of Idling
Technical Paper

Sound Quality Evaluation of Passenger Vehicle Interior Noise

1993-05-01
931347
Objective measures to evaluate sound quality are important for proper sound design and noise improvement. In this paper, the objective measures of interior noise of passenger vehicle, which is operated at constant engine revolution speed, are discussed. Subjective evaluation test of the interior noise was done using the semantic differential method. By applying factor analysts to the subjective evaluation scores, three important factors of the sound quality were extracted, i.e. comfortable, powerful and booming factors. Each factor was correlated with various physical values, for example octave band levels. Furthermore, the data is analyzed by multiple linear regression analysis with stepwise variable selection, of the each factor scores against the various physical values. Finally, an objective measure to evaluate each of these factors was conducted using the combination of simple physical values. Each of these measures was good correlation with each of the subjective evaluations.
X