Refine Your Search

Topic

Search Results

Technical Paper

A Decision Analytic Approach to Incorporating Value of Information in Autonomous Systems

2018-04-03
2018-01-0799
Selecting the right transportation platform is challenging, whether it is at a personal level or at an organizational level. In settings where predominantly the functional aspects rule the decision making process, defining the mobility of a vehicle is critical for comparing different offerings and making acquisition decisions. With the advent of intelligent vehicles, exhibiting partial to full autonomy, this challenge is exacerbated. The same vehicle may traverse independently and with greater tolerance for acceleration than human occupied vehicles, while, at the same time struggle with obstacle avoidance. The problem presents itself at the individual vehicle sensing level and also at the vehicle/fleet level. At the sensing and information level, one can be looking at issues of latency, bandwidth and optimal information fusion from multiple sources including privileged sensing. At the overall vehicle level, one focuses more on the ability to complete missions.
Journal Article

Aerodynamic Shape Optimization of an SUV in early Development Stage using a Response Surface Method

2014-09-30
2014-01-2445
In the development of an FAW SUV, one of the goals is to achieve a state of the art drag level. In order to achieve such an aggressive target, feedback from aerodynamics has to be included in the early stage of the design decision process. The aerodynamic performance evaluation and improvement is mostly based on CFD simulation in combination with some wind tunnel testing for verification of the simulation results. As a first step in this process, a fully detailed simulation model is built. The styling surface is combined with engine room and underbody detailed geometry from a similar size existing vehicle. From a detailed analysis of the flow field potential areas for improvement are identified and five design parameters for modifying overall shape features of the upper body are derived. In a second step, a response surface method involving design of experiments and adaptive sampling techniques are applied for characterizing the effects of the design changes.
Technical Paper

An Application of Variation Simulation - Predicting Interior Driveline Vibration Based on Production Variation of Imbalance and Runout

2011-05-17
2011-01-1543
An application of variation simulation for predicting vehicle interior driveline vibration is presented. The model, based on a “Monte Carlo”-style approach, predicts the noise, vibration and harshness (NVH) response of the vehicle driveline based on distributions of imbalance and runout derived from manufacturing production variation (the forcing function) and the vehicle's sensitivity to the forcing function. The model is used to illustrate the change in vehicle interior vibration that results when changes are made to production variation for runout and imbalance of driveline components, and how those same changes result in different responses based on vehicle sensitivity.
Technical Paper

Approximating Convective Boundary Conditions for Transient Thermal Simulations with Surrogate Models for Thermal Packaging Studies

2019-04-02
2019-01-0904
The need for transient thermal simulations in vehicle packaging studies has grown rapidly in recent years. To date, the computational costs associated with the transient simulation of 3D conjugate heat transfer phenomena has prohibited the widespread use of full vehicle transient simulations. This paper presents results from a recent study that explored a method to circumvent the computational costs associated with long transient conjugate heat transfer simulations. The proposed method first segregates the thermal structural and fluid physics domains to take advantage of time scale differences. The two domains are then re-coupled to calculate a series of steady state conjugate heat transfer simulations at various vehicle speeds. The local convection terms are then used to construct a set of surrogate models dependent on vehicle speed, that predict the local heat transfer coefficients and the local near wall fluid temperatures.
Journal Article

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

2020-04-14
2020-01-0176
The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
Technical Paper

Correlation of Explicit Finite Element Road Load Calculations for Vehicle Durability Simulations

2006-03-01
2006-01-1980
Durability of automotive structures is a primary engineering consideration that is evaluated during a vehicle's design and development. In addition, it is a basic expectation of consumers, who demand ever-increasing levels of quality and dependability. Automakers have developed corporate requirements for vehicle system durability which must be met before a products is delivered to the customer. To provide early predictions of vehicle durability, prior to the construction and testing of prototypes, it is necessary to predict the forces generated in the vehicle structure due to road inputs. This paper describes an application of the “virtual proving ground” approach for vehicle durability load prediction for a vehicle on proving ground road surfaces. Correlation of the results of such a series of simulations will be described, and the modeling and simulation requirements to provide accurate simulations will be presented.
Technical Paper

Cycle-Averaged Heat Flux Measurements in a Straight-Pipe Extension of the Exhaust Port of an SI Engine

2006-04-03
2006-01-1033
This paper presents an experimental study of the cycle-averaged, local surface heat transfer, from the exhaust gases to a straight pipe extension of the exhaust port of a four-cylinder spark-ignition (SI) engine, over a wide range of engine operating conditions, from 1000 rpm, light load, through 4000 rpm, full load. The local steady-state heat flux was well correlated by a Nusselt-Reynolds number relationship that included entrance effects. These effects were found to be the major contributor to the local heat transfer augmentation. The Convective Augmentation Factor (CAF), which is defined as the ratio of the measured heat flux to the corresponding heat flux for fully-developed turbulent pipe flow, was found to decrease with increasing Reynolds number and increasing axial distance from the entrance of the test section.
Technical Paper

ECU Development for a Formula SAE Engine

2005-04-11
2005-01-0027
Motivated by experiences in the Formula SAE® competition, an engine control unit (ECU) was designed, developed and tested at Oakland University. A systems approach was taken in which the designs of the electronic architecture and software were driven by the mechanical requirements and operational needs of the engine, and by the need for dynamometer testing and tuning functions. An ECU, powered by a 68HC12 microcontroller was developed, including a four-layer circuit board designed for EMC. A GUI was written with Visual C++® for communication with a personal computer (PC). The ECU was systematically tested with an engine simulator, a 2L Ford engine and a 600cc Honda engine, and finally in Oakland's 2004 FSAE vehicle.
Journal Article

Efficient Re-Analysis Methodology for Probabilistic Vibration of Large-Scale Structures

2008-04-14
2008-01-0216
It is challenging to perform probabilistic analysis and design of large-scale structures because probabilistic analysis requires repeated finite element analyses of large models and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability based design optimization of large scale structures that consists of two re-analysis methods; one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite element models consisting of tens or hundreds of thousand degrees of freedom and large numbers of design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for many probability distributions of the design variables by performing a single Monte Carlo simulation.
Technical Paper

Experimental Study of Springback (Side-Wall-Curl) of Sheet Metal based on the DBS System

2019-04-02
2019-01-1088
Springback is a common phenomenon in automotive manufacturing processes, caused by the elastic recovery of the internal stresses during unloading. A thorough understanding of springback is essential for the design of tools used in sheet metal forming operations. A DBS (Draw-bead Simulator) has been used to simulate the forming process for two different sheet metals: aluminum and steel. Two levels of pulling force and two die radii have been enforced to the experimental process to get different springback. Also, the Digital Image Correlation (DIC) system has been adopted to capture the sheet contour and measure the amount of side-wall-curl (sheet springback) after deformation. This paper presents the influence of the material properties, force, and die radius on the deformation and springback after forming. A thorough understanding of this phenomenon is essential, seeing that any curvature in the part wall can affect quality and sustainability.
Technical Paper

Friction Coefficient Evaluation on Aluminum Alloy Sheet Metal Using Digital Image Correlation

2018-04-03
2018-01-1223
The coefficient of friction between surfaces is an important criterion for predicting metal behavior during sheet metal stamping processes. This research introduces an innovative technique to find the coefficient of friction on a lubricated aluminum sheet metal surface by simulating the industrial manufacturing stamping process while using 3D digital image correlation (3D-DIC) to track the deformation. During testing, a 5000 series aluminum specimen is placed inside a Stretch-Bend-Draw Simulator (SBDS), which operates with a tensile machine to create a stretch and bend effect. The friction coefficient at the contact point between an alloy sheet metal and a punch tool is calculated using an empirical equation previously developed. In order to solve for the unknown friction coefficient, the load force and the drawback force are both required. The tensile machine software only provides the load force applied on the specimen by the load cell.
Technical Paper

High Dimensional Preference Learning: Topological Data Analysis Informed Sampling for Engineering Decision Making

2024-04-09
2024-01-2422
Engineering design-decisions often involve many attributes which can differ in the levels of their importance to the decision maker (DM), while also exhibiting complex statistical relationships. Learning a decision-making policy which accurately represents the DM’s actions has long been the goal of decision analysts. To circumvent elicitation and modeling issues, this process is often oversimplified in how many factors are considered and how complicated the relationships considered between them are. Without these simplifications, the classical lottery-based preference elicitation is overly expensive, and the responses degrade rapidly in quality as the number of attributes increase. In this paper, we investigate the ability of deep preference machine learning to model high-dimensional decision-making policies utilizing rankings elicited from decision makers.
Technical Paper

Prediction of Tire-Snow Interaction Forces Using Metamodeling

2007-04-16
2007-01-1511
High-fidelity finite element (FE) tire-snow interaction models have the advantage of better understanding the physics of the tire-snow system. They can be used to develop semi-analytical models for vehicle design as well as to design and interpret field test results. For off-terrain conditions, there is a high level of uncertainties inherent in the system. The FE models are computationally intensive even when uncertainties of the system are not taken into account. On the other hand, field tests of tire-snow interaction are very costly. In this paper, dynamic metamodels are established to interpret interaction forces from FE simulation and to predict those forces by using part of the FE data as training data and part as validation data. Two metamodels are built based upon the Krieging principle: one has principal component analysis (PCA) taken into account and the other does not.
Journal Article

Reanalysis of Linear Dynamic Systems using Modified Combined Approximations with Frequency Shifts

2016-04-05
2016-01-1338
Weight reduction is very important in automotive design because of stringent demand on fuel economy. Structural optimization of dynamic systems using finite element (FE) analysis plays an important role in reducing weight while simultaneously delivering a product that meets all functional requirements for durability, crash and NVH. With advancing computer technology, the demand for solving large FE models has grown. Optimization is however costly due to repeated full-order analyses. Reanalysis methods can be used in structural vibrations to reduce the analysis cost from repeated eigenvalue analyses for both deterministic and probabilistic problems. Several reanalysis techniques have been introduced over the years including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA) and the Epsilon algorithm, among others.
Journal Article

Reliability and Cost Trade-Off Analysis of a Microgrid

2018-04-03
2018-01-0619
Optimizing the trade-off between reliability and cost of operating a microgrid, including vehicles as both loads and sources, can be a challenge. Optimal energy management is crucial to develop strategies to improve the efficiency and reliability of microgrids, as well as new communication networks to support optimal and reliable operation. Prior approaches modeled the grid using MATLAB, but did not include the detailed physics of loads and sources, and therefore missed the transient effects that are present in real-time operation of a microgrid. This article discusses the implementation of a physics-based detailed microgrid model including a diesel generator, wind turbine, photovoltaic array, and utility. All elements are modeled as sources in Simulink. Various loads are also implemented including an asynchronous motor. We show how a central control algorithm optimizes the microgrid by trying to maximize reliability while reducing operational cost.
Journal Article

Residual Stresses in As-Quenched Aluminum Castings

2008-04-14
2008-01-1425
A significant amount of residual stresses can be developed in aluminum castings during heat treatment. This paper reports an experimental study of the residual stress distributions in aluminum castings after solution treatment and water quench. The residual stresses in aluminum castings are measured using both optical and resistance strain rosettes. The optical strain rosette technique was recently developed in conjunction with ring-core cutting method for residual stress measurement. The measured residual stresses from optical and resistance strain rosettes are compared with the results of X-ray and neutron diffraction measurements. The advantages and disadvantages of various measurement methods are discussed.
Journal Article

Scuffing Behavior of 4140 Alloy Steel and Ductile Cast Iron

2012-04-16
2012-01-0189
Scuffing is a failure mechanism which can occur in various engineering components, such as engine cylinder kits, gears and cam/followers. In this research, the scuffing behavior of 4140 steel and ductile iron was investigated and compared through ball-on-disk scuffing tests. A step load of 22.2 N every two minutes was applied with a light mineral oil as lubricant to determine the scuffing load. Both materials were heat treated to various hardness and tests were conducted to compare the scuffing behavior of the materials when the tempered hardness of each material was the same. Ductile iron was found to have a consistently high scuffing resistance before tempering and at tempering temperatures lower than 427°C (HRC ≻45). Above 427°C the scuffing resistance decreases. 4140 steel was found to have low scuffing resistance at low tempering temperatures, but as the tempering temperature increases, the scuffing resistance increased.
Technical Paper

Study of Ausferrite Transformation Kinetics for Austempered Ductile Irons with and without Ni

2016-04-05
2016-01-0421
This research studies the transformation kinetics of austempered ductile iron (ADI) with and without nickel as the main alloying element. ADI has improved mechanical properties compared to ductile iron due to its ausferrite microstructure. Not only can austempered ductile iron be produced with high strength, high toughness and high wear resistance, the ductility of ADI can also be increased due to high carbon content austenite. Many factors influence the transformation of phases in ADI. In the present work, the addition of nickel was investigated based on transformation kinetics and metallography observation. The transformation fractions were determined by Rockwell hardness variations of ADI specimens. The calculation of transformation kinetics and activation energy using the “Avrami Equation” and “Arrhenius Equation” is done to describe effects of nickel alloy for phase reactions.
Technical Paper

The Digital Image Correlation Technique Applied to Hole Drilling Residual Stress Measurement

2014-04-01
2014-01-0825
The residual stresses found in components are mainly due to thermal, mechanical and metallurgical changes of material. The manufacturing processes such as fabrication, assembly, welding, rolling, heat treatment, shot peening etc. generate residual stresses in material. The influence of residual stress can be beneficial or detrimental depending on nature and distribution of the residual stress in material. In general, the compressive residual stress can increase the fatigue life of material because it provides greater resistance for crack initiation and propagation. A significant number of improvements for residual stress measurement techniques have occurred in last few decades. The most popular technique of residual stress measurement is based on the principle of strain gage rosette and hole drilling (ASTM E837-01, destructive).
Technical Paper

Tribological and Metallurgical Properties of Nitrided AISI 4340 Steel

2014-04-01
2014-01-0959
Nitridng usually improves wear resistance and can be accomplished using a gas or plasma method; it's necessary to find if there is any difference in surface roughness, wear and/or wear mechanism when choosing between methods for nitriding. In this study, Ball-on-disk wear test was compared on coupons nitrided with five different nitriding cycles that processed at temperatures of 500-570°C, with a processing time of 8 - 80 hrs. Different compound layer thicknesses were formed, (5-8μm), and a minimum of 0.38 mm case depth was produced. Nitrided samples were also compared to nitrocarburized and the nitrided coupons with a “0” compound layer in a ball-on-disk test. Few selected coupons were post-polished and wear test on ball-on-disk test was compared with the coupons without post polishing. Optical surface roughness using White Light Interferometry (WLIM) and metallurgical testing was performed.
X