Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Two-Layer Approach for Predictive Optimal Cruise Control

2016-04-05
2016-01-0634
Optimization-based strategy planning for predictive optimal cruise control has the potential for significant improvements in passenger comfort and fuel efficiency. It is, however, associated with a high computational complexity that complicates its implementation in an electronic control unit. When implementing predictive cruise control, real-time capability must be ensured while maintaining optimal control performance in the presence of disturbance and model uncertainty. Real-time capability can be achieved either by a significant simplification of the optimization problem or by a layered control approach, combining the strategy planner with a low-level controller. Both approaches, however, are prone to deteriorate optimal control performance, particularly in the presence of disturbance. We present a model-predictive controller structure that extends the layered control approach by using the same optimization algorithm on two layers.
Technical Paper

Developing a Theory for Active Grille Shutter Aerodynamics—Part 1: Base Theory

2019-06-07
2019-01-5063
The aim is to develop a theory to describe the aerodynamic behavior of active grille shutters (AGS). The theory correlates the cooling air mass flow and drag of a vehicle with the angle and number of air flaps on the AGS. The relatively simple mathematical formulation of this theory provides an insight into the aerodynamic behavior and characteristic curve shape of AGS. It illustrates how the number of air flaps changes and influences the shape of the AGS characteristic curve. The theory is validated by experiments using wind tunnel measurements on real vehicles with AGS. The comparisons show good agreement between theory and experiment.
Journal Article

Energy Analysis of Power Steering Systems During a Newly Developed Driving Cycle

2011-04-12
2011-01-0230
Developments in power steering systems have been concentrated on the energy consumption as the environmental issues intensified in recent years. After the widely used hydraulic power steering system, the introduction of electric and electro-hydraulic power steering systems has shed light on the energy saving of the power steering system. In order to evaluate the energy consumption of the systems, firstly a new driving cycle was developed taking into account of both longitudinal and lateral driving behaviour. By comparing the vehicle response to the customer driving behaviour, the most similar sections on different traffic conditions were chosen therefore form the new driving cycle.
Technical Paper

Experimental Study on the Influence of Model Motion on the Aerodynamic Performance of a Race Car

2006-04-03
2006-01-0803
While race cars run in a highly dynamic environment, aerodynamic testing through state of the art wind tunnel tests, as well as CFD analyses, are mostly performed under static or stationary conditions. Therefore, other than track data, only very limited data are available on time resolved aerodynamic forces and pressures for a moving car. To investigate these effects a new model manipulator was developed which allows substantial pitch and heave movements up to 20Hz. Wind tunnel tests with a former LeMans type race car model have shown that the difference between a steady state and a true dynamic analysis is significant.
Technical Paper

Influence of Test-Section Length and Collector Area on Measurements in ¾-Open-Jet Automotive Wind Tunnels

1988-02-01
880251
A detailed investigation of aerodynamic car testing in ¾-open-test-sections was made. Herein two main influencing variables (dimensionless length scales) could be identified: first, the relative length of the ¾-open-test-section influences the static pressure gradient along the x-axis and, second, the relative collector area has large effects on the wake of a car. The measured values (i.e. drag) are mainly determined by a combined effect of these two parameters. The basic investigation was made in the Porsche 1:4 model-wind-tunnel with two different types of vehicles {sportscar and van) and in two different scales (1:4, 1:5). The results are graphically summarized. This diagram can predict the differences between full size open-jet-wind-tunnels. These predictions were verified by measuring Porsche production cars and the Porsche calibration car in three other automotive wind-tunnels.
Technical Paper

Investigations of the Emissions of Fuels with different Compositions and Renewable Fuel Components in a GDI Engine

2020-04-14
2020-01-0285
Investigations were performed, in which fuels and fuel components were compared regarding gaseous as well as particulate number (PN) emissions. The focus on the selection of the fuel components was set on the possibility of renewable production, which lead to Ethanol, as the classic bio-fuel, Isopropanol, Isobutanol and methyl tert-butyl ether (MTBE). As fuels, a Euro 6 (EU6) reference fuel, an anti-spark-fouling (ASF) fuel, a European Super Plus (RON 98) in-field fuel and a potentially completely renewable fuel, which was designed by Porsche AG (named POSYN), were chosen. The composition of the fuels differs significantly which results in large differences in the exhaust gas emissions. The fuels, except ASF, are compliant with the European fuel standard EN 228.The experiments chosen were a variation of the start of injection (SOI) at different load points at a constant engine speed of 2000 rpm, amongst others.
Technical Paper

Measurement of Reference Dynamic Pressure in Open-Jet Automotive Wind Tunnels

1992-02-01
920344
In automotive open-jet wind tunnels reference velocity is usually measured in terms of a static pressure difference between two different cross-sectional areas of the tunnel. Most commonly used are two sections within the nozzle (Method 1: ΔP-Nozzle). Sometimes, the reference velocity is deduced from the static pressure difference between settling chamber and plenum (Method 2: ΔP-Plenum). Investigations in three full-scale open-jet automotive wind tunnels have clearly shown that determination of reference dynamic pressure according to ΔP-Plenum is physically incorrect. Basically, all aerodynamic coefficients, including drag coefficient, obtained by this method are too low. For test objects like cars and vans it was found that the error ΔcD depends on the test object's drag blockage in an open-jet wind tunnel.
Technical Paper

Moving Belt with Distributed Suction in the Porsche Model Wind Tunnel

1999-03-01
1999-01-0650
The Porsche 1:4-scale model wind tunnel was upgraded with a moving belt in combination with basic and distributed boundary layer suction devices. The belt is placed between the rotating wheels of the model with the external underfloor balance in operation. Special attention was given to providing a sufficient length of the belt with regard to road simulation for the aerodynamic optimization of race car models with their specific wake behavior. The boundary layer suction systems control the regions beyond the belt. Furthermore the balance was equipped with a pitch angle adjustment system in order to simulate the spring deflections of a moving vehicle. Results from a series of measurements taken from one race car model and one passenger car model are presented in order to investigate the influence of the boundary layer-, wheel rotation- and pitch adjustment-controls on the characteristic aerodynamic figures of the models.
Technical Paper

The Porsche Wind Tunnel Floor-Boundary-Layer Control - A Comparison with Road Data and Results from Moving Belt

1992-02-01
920346
The design of the PORSCHE wind tunnels - two facilities, one in full- and the other in quarter-scale - was determined by the demand for simulating both passenger car models and racing vehicles. One peculiarity, the very low ride height of the latter requires a reduction of the oncoming boundary layer that develops along the test- section floor. The number of difficult practical engineering problems in using and operating full-scale moving belts (*Bearman et al. [14]), led to the development of two suction systems using porous plates in the test section floor. These have been installed in the full-scale and in the 1:4 - scale windtunnels. For verification or optimization of the originally estimated suction rates required to meet realistic road conditions, a number of experiments on the road and in a moving-belt facility were conducted and the results compared to values from the suction facilities.
X