Refine Your Search

Topic

Author

Search Results

Technical Paper

1D Simulation Accuracy Enhancement for Predicting Powertrain Cooling System Performance

2019-01-09
2019-26-0298
In today’s competitive scenario, the automotive product life cycle has drastically reduced and all Auto OEM’s are coming up with their updated products with lesser development time. These frequent product upgrades are possible due to use of various digital tools during product design and development. Design and optimization of engine coolpack (powertrain cooling unit) to attain engine cooling performance is one of the important parameter during vehicle development or upgrade. Hence, to keep control over development cost and time of delivery, quick and accurate digital validation capability like one dimensional (1D) simulation is the need of the hour. To predict the powertrain cooling (PTC) performance at vehicle concept stage, when physical prototypes are not available, airflow data from similar developed platforms is considered as an input for 1D simulation.
Technical Paper

A Comparative Study of Cradle and Sub Frame Type Powertrain Mounting System on Electric Vehicle

2021-08-31
2021-01-1022
The growing demand of fuel and cost saving on vehicle, today’s vehicle manufacturer are working on various weight reduction initiative in EV. Lighter weight vehicle have bigger challenges to meet NVH requirement. There are two types of EV called modified and adopted EV’s are commonly in use. The sub frame type of EV system comes under the category of modified EV. In this paper, a mounting system is studied and compared for a cradle type EV as well as sub frame or saddle type EV. MATLAB based optimization tools are used for parameter optimization. The focus is put on the optimization of mounting system location and stiffness for energy optimization, CoG and TRA-EA optimization. The best engine mounting system is compared and adopted based on simulation. 12 DOF studied to address high frequency resonance issues for a sub frame type EV. Finally robustness of the system is checked based on various simulation and optimization.
Technical Paper

A Comparative Study of Source Vibration Between the Electric Motor and Internal Combustion Engine Application for Passenger Vehicles

2021-09-21
2021-01-1243
In an electric vehicle, internal combustion engines are replaced by the electric motor. As a result, the signature of source vibration changes. The noise, vibration and harshness (NVH) issues are entirely different in electric vehicle (EV) compared to internal combustion engine (ICE) due to the change in source vibration. The outline of this paper is a comparative study of source vibration, the challenges to address various noise issues related to source vibration and the isolation methodology. A case study is presented to show the different methods of treatment required to mitigate source vibration issues during the electric vehicle development program. Keywords: Engine, Motor, vibration
Technical Paper

A Continuum Design Sensitivity Analysis of Vehicle Aggregates for Refined NVH Performance

2021-09-22
2021-26-0294
Transmission of vibration and noise to the occupants and especially driver contributes significantly to the quality perception of the motor vehicle and eventually, it affects the overall ride comfort. These forces mainly reach to customer through tactile locations, i.e. floor, gearshift lever, steering wheel and seat. Showroom/Parking customer drive pattern of a vehicle evinces the steering system and driver’s seat rail vibration as strikingly linked aspect to evaluate human comfort [1]. This paper deals with the study of vibration at steering wheel and seat affecting human comfort at engine idle rpm with AC ON and OFF condition for passenger vehicles. The transmissibility of engine and radiator induced vibrations has been investigated with respect to modal alignment of steering and seat system.
Technical Paper

A Multiphysics Approach for NVH Analysis of PMSM Traction Motor

2021-09-22
2021-26-0520
Electric vehicles are fast expanding in market size, and there are increasing customer expectations on all aspects of the vehicle, including its noise and vibrational characteristics. Irritable noise from traction motors account for around 15% of the overall noise in an electric vehicle, and thus, has a need to be analysed and studied. This study focuses on identifying the critical vibro - acoustic orders for an 8 pole PMSM (Permanent Magnet Synchronous Motor) for three cases - healthy, with static eccentricity and with dynamic eccentricity. PMSM motors are widely used for traction and other applications due to their higher power density along with compact size. A coupled approach between electromagnetic and vibro - acoustic simulation is deployed to characterise the NVH behaviour of the motor.
Technical Paper

A New Approach to Check the Heath of Engine Mounting & Suspension Bolted Joints

2022-03-29
2022-01-0634
The torque required to tighten any threaded joint is different from the necessary torque to untighten threaded bolt or nut, and it is not observed or widely known since this is a regular and straightforward operation. Typically the torque needed to untighten a newly tightened clamp is around 10% to 30% less than the torque to stretch it further. During tightening a threaded bolt, a significant amount of torque required to overcome friction in the threads and under the nut face. The proportion of the torque used to overcome frictional resistance depends upon the friction value. When we tighten a joint with a coefficient of friction of 0.12, only about approximately 14% of the torque required to stretch the fastener producing the clamp load with 86% of the torque is lost overcoming friction. The torque needed to pull the bolt always acts in the untightening direction, resulted in untightening torque lags behind the tightening torque.
Technical Paper

A New Gen ‘Super-Efficient Condenser’ for Mobile Air Conditioning Application

2023-09-14
2023-28-0043
In the modern era of automotive industry, occupant comfort inside the cabin is a basic need and no more a luxury feature. With increase in number of vehicles, the expectations from customers are also changing. One of the major expectations from real world customers is quick cabin cooling thru all seasons, particularly when the vehicle is hot soaked and being used in summer conditions. Occupant thermal comfort inside the vehicle cabin is provisioned by a mobile air conditioning (MAC) system, which operates on a vapor compression-based cycle using a refrigerant. The main components of a direct expansion (DX) based MAC system are, a compressor, condenser, evaporator, and expansion valve. Conditioned air is circulated inside the cabin using a blower, duct system and air vents. The AC condenser is the most critical component in AC circuit as it rejects heat, thereby providing for a cooling effect inside the cabin.
Technical Paper

A Novel Technique to Establish Various Important Characteristic to Analyze Complete Hydraulic Power Steering System using Model Based Design Approach

2017-01-10
2017-26-0259
Steering system deliver a precise directional control to the vehicle chassis and ensure the safe driving at all maneuvers. Hydraulic power assisted system (HPAS) helps drivers to steer by boosting steering assistance of the steering wheel while retaining the road feel. HPAS performance is associated with the design characteristics of rotary valve, steering, suspension, kinematics, brake, tire, vehicle speed and load transfer. Thus a detailed power steering system model is absolutely necessary to evaluate and optimize the performance characteristics. However, many components of HPAS system are proprietary in nature so it is very challenging to get component characteristic of each sub-system for the complete power steering system model. Hence, it is very important to establish a technique to extract all such influencing characteristics with available test facility.
Technical Paper

Air Compressor Duty Cycle Reduction in Passenger Bus Application

2015-04-14
2015-01-0139
Today urban buses are equipped with more air consuming devices for an example pneumatic doors, exhaust brake, air suspension and in SCR system to name a few. This has resulted in higher air demand leading to high compressor duty cycles which cause conditions (such as higher compressor head temperatures) that may adversely affect air brake charging system performance. These conditions may require additional maintenance due to a higher amount of oil vapor droplets being passed along into the air brake system. Factors that add to the duty cycle are air suspension, additional air accessories, use of an undersized compressor, frequent stops, excessive air leakage from fittings, connections, lines, chambers or valves, etc. This paper discussed about methodology used to reduce air consumption of air consuming devices used in urban bus application. Performance assessment of air consuming devices with minimum available air pressure was conducted and found satisfactory.
Technical Paper

Analysis of Automotive Control Pedals Ergonomics through Mathematical Modelling Based on Human Anthropometry

2017-01-10
2017-26-0252
Vehicle Ergonomics is one of the most vital factor to be considered in vehicle design and development, as the customer wants a comfortable and performance oriented vehicle. An uncomfortable driving posture can lead to painful driving experiences for longer hauls. The control pedals viz. Accelerator, Brake and clutch pedal (ABC Pedals), are the most frequently used parts in the vehicle, their proper positioning with respect to human anthropology is of prime importance, from driver comfort viewpoint. The methodology currently used for optimizing ergonomics with respect to the positioning of pedals in a vehicle included; measuring anthropometric angles manually with the help of H-Point Machine, subjective jury analysis and through software like RAMSIS, JACK, etc. Manual measurement doesn’t give the flexibility of iterations for optimization. The subjective analysis is based on insinuations thereby, cannot be standardized.
Technical Paper

Analytical Estimation of Clutch Life for Manual Transmission

2019-04-02
2019-01-0335
The clutch is the connecting link between engine and the power train. It connects and disconnects the engine to the gearbox as per the wish of the driver. Clutch has a friction disc which acts like a fuse wire which wears in the process of the connection. This paper tries to calculate the clutch life analytically (In terms of Kms. run by vehicle), of automotive vehicles having manual transmission. As the clutch engages and disengages the engine to the gearbox, during this time due to slippage, energy is dissipated which results in the wear of the clutch disc. It calculates life based on the volumetric wear of the clutch disc and wear allowance available. The work done by other people in this domain include the empirical estimation of clutch life based on the past data, effect of the surface topography on the friction characteristics of the wet clutches, modeling of clutch housing and facing temperature for the estimation of the clutch life of a manual transmission etc.
Technical Paper

Application of Special Rubber Compound to Avoid BSR Issues in Vehicle

2022-03-29
2022-01-0614
Today, noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many chassis assemblies which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. Engine mount design is major area where BSR noises can be heard inside cabin on various road conditions. Natural rubber is regular rubber used in engine mount applications but in this paper BSR problems are solved by changing the rubber compound i.e., NR+BR (slippery compound). Detailed case study is presented where slippery rubber compound is used which is solving BSR issue and also meeting durability targets.
Technical Paper

Approach to Achieve Weight Reduction for Sprayable Vinyl Plastisol Sealer, on Automotive Underbody

2022-10-05
2022-28-0371
Vehicles subjected to Indian duty cycles have to undergo extreme environments & road terrains, stone chipping. Underbody wear from this is one of the most significant forms of deleterious corrosion. Automobile companies deal with this by going for exotic & expensive underbody coating, which compositionally are "Polyvinyl Plastisol also popularly known as Poly Vinyl Chloride (PVC)". Across automotive industry, the stone chipping is prevented via applying PVC-coating to the extent of 800-1000 microns. The application of PVC-material throughout the vehicle underbody will add approximately 8-12 Kgs of weight. Our objective was to reduce the weight of applied PVC-material.
Technical Paper

Approach to Model AC Compressor Cycling in 1D CAE with Enhanced Accuracy of Cabin Cooldown Performance Prediction

2021-09-22
2021-26-0430
In previous work, AC Compressor Cycling (ACC) was modeled by incorporating evaporator thermal inertia in Mobile Air Conditioning (MAC) performance simulation. Prediction accuracy of >95% in average cabin air temperature has been achieved at moderate ambient condition, however the number of ACC events in 1D CAE simulation were higher as compared to physical test [1]. This paper documents the systematic approach followed to address the challenges in simulation model in order to bridge the gap between physical and digital. In physical phenomenon, during cabin cooldown, after meeting the set/ target cooling of a cabin, the ACC takes place. During ACC, gradual heat transfer takes place between cold evaporator surface and air flowing over it because of evaporator thermal inertia.
Technical Paper

Automotive Crankshaft Development in Austempered Ductile Iron Casting

2023-05-25
2023-28-1302
The automotive industry is facing a challenge as efficiency improvements are required to address the strict emission norms which in turn requires high performance downsized, lightweight IC engines. The increasing demand for lightweight engine needs high strength to weight ratio materials. To meet high strength to weight ratio, castings are preferable. However due to strength limitations for critical crankshaft applications, it forces to use costly forgings such as micro alloyed forging steel and Martensitic (after heat treatment) forging steel. To reduce the cost impact, high strength Austempered Ductile iron (ADI) casting is developed for crankshaft applications to substitute steel forgings. Austempered Ductile Iron is having an excellent mechanical properties due to aus-ferritic structure. The improved properties of developed ADI Crankshaft over steel forged crankshaft offers additional weight advantage.
Technical Paper

Challenges during Deployment of Cabin Air Quality Enhancers in Current Mobility Solutions

2020-08-18
2020-28-0016
In the past five years, Indian cities have been consistently appearing in the list of top 15 world’s most polluted cities. Every day, a common man in India spends more than 2 hours on the road due to numerous reasons, thus exposed to inhale highly polluted air. Further, the passenger car users is exposed to ~ 6 times more polluted air as compared to ambient air reason being the air is recirculated through the air conditioning system. Prolonged exposure to such polluted/ recirculated air shows increasing trend in respiratory illnesses, breathing discomfort and fatigue. This paper discusses the key challenges involved in incorporating cabin air filter as cabin air quality enhancer in current mobility solutions.
Technical Paper

Cold Idle Gear Rattle in Manual Transmission Passenger Car-Temperature Based Phenomenon

2020-09-15
2020-01-2245
Gear rattle is due to impact noise of unloaded gears in transmission having freedom to move in backlash region. Engine order vibrations in the presence of backlash in meshing pairs induce the problem. It is a system behavior wherein flywheel torsional vibrations, the pre-damper characteristics and transmission drag torque plays a vital role in an engine idle condition (hot & cold). Idle rattle is a severe issue, which is highly noticeable in cold condition or after 1st engine crank. Gear rattling observed in idle condition is idle gear rattle or neutral gear rattle, specifically in cold condition is a “Cold idle rattle” and this is one of the critical noise parameters considered for entire vehicle NVH. Damper mechanism in the clutch, is used to serve better isolation (by reducing the input excitation to transmission parts) of vibrations between engine and transmission their by reducing gear rattle intensity.
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

Coupled CFD Simulation of Brake Duty Cycle for Brake System Design

2021-09-22
2021-26-0360
Brake system design is intended to reduce vehicle speed in a very short time by ensuring vehicle safety. In the event of successive braking, brake system absorbs most of vehicle’s kinetic energy in the form of heat energy, at the same time it dissipates heat energy to the surrounding. During this short span of time, brake disc surface and rotor attains the highest temperatures which may cross their material allowable temperature limit or functional requirement. High temperatures on rotor disc affects durability & thermal reliability of the brake rotor. Excessive temperature on brake rotors can induce brake fade, disc coning which may result in reduced braking efficiency. To address the complex heat transfer and highly transient phenomenon during successive braking, numerical simulations can give more advantage than physical trials which helps to analyze complex 3D flow physics and heat dissipation from rotors in the vicinity of brake system.
Technical Paper

Critique of Torsional Vibration Damper (TVD) Design for Powertrain NVH

2017-01-10
2017-26-0217
Crank train torsional vibration is an important aspect for design and development of Powertrain for NVH refinement and durability. Crank train torsional vibration parameters like angular acceleration of flywheel or twist, depends upon various design parameters like geometry of crankshaft, mass of flywheel, stiffness of clutch, mass of pulley etc. It also depends upon engine operating conditions like engine speed, engine load, combustion peak pressure and combustion pressure variation etc. Most of these parameters are decided by engine power, torque, engine architecture and packaging constraints. Addition of torsional vibration damper (TVD), which works on the principle of tuned dynamic absorber, is commonly deployed design solution to control the torsional vibrations as well as stresses (to improve durability of crank train) induced in crank train assembly at specified modal frequency.
X