Refine Your Search

Topic

Search Results

Technical Paper

A Closed System Simulation based Methodology to Accomplish Advance Engine Calibrations towards CAFE

2021-09-22
2021-26-0352
The automotive engineering fraternity is facing tremendous challenges to improve fuel economy and emissions of the internal combustion engine. The stringent CAFÉ standards for CO2 emissions are expected to become further demanding as time progresses. Indian OEM engineering experts have been considering various technology options to improve vehicle fuel economy. However, the time and costs associated with the development of these strategies and technologies remains a point of major concern and challenge. The potential of a technology to reduce fuel consumption can be estimated in three basic ways. One approach involves developing an actual prototype engine and vehicle with the technologies under evaluation, performing the actual measurements. Some variability from test to test is although expected, this method is the most accurate but time consuming and very expensive.
Technical Paper

A Continuum Design Sensitivity Analysis of Vehicle Aggregates for Refined NVH Performance

2021-09-22
2021-26-0294
Transmission of vibration and noise to the occupants and especially driver contributes significantly to the quality perception of the motor vehicle and eventually, it affects the overall ride comfort. These forces mainly reach to customer through tactile locations, i.e. floor, gearshift lever, steering wheel and seat. Showroom/Parking customer drive pattern of a vehicle evinces the steering system and driver’s seat rail vibration as strikingly linked aspect to evaluate human comfort [1]. This paper deals with the study of vibration at steering wheel and seat affecting human comfort at engine idle rpm with AC ON and OFF condition for passenger vehicles. The transmissibility of engine and radiator induced vibrations has been investigated with respect to modal alignment of steering and seat system.
Technical Paper

A Method to Capture and Analyze Brake Dynamic Drag

2021-09-22
2021-26-0477
At present, all automobile manufacturers are fighting climate change through various emission reduction approach. In vehicle Brake system, one of the major factor which contributes to vehicle tail pipe emission in residual brake drag. A residual brake drag shall be defined as the resistance torque produced by brake in brake released condition. In Caliper brake assemblies which is a commonly used foundation brake, to reduce residual drag, low drag caliper is used. Low drag in caliper is achieved using positive retraction clip and increased caliper piston seal roll back. In general residual drag is measured in static test condition and there is no standard test procedure to assess residual drag in dynamic condition. Vehicle manufactures pays higher price for this low drag caliper owing to its benefit towards vehicle emission reduction.
Journal Article

Adopting the Features of Digital Rate Shaping (DRS) with Multiple Injections Strategy on Small 2 Cylinder Common Rail BSVI Engine to Improve FE

2021-09-22
2021-26-0061
The Common Rail fuel injection System (CRS) has completely changed the whole diesel engine combustion cloud dynamics and enhanced the applicability of diesel engines further with a motto of providing a more cleaner sky and greener earth. The most cutting-edge technological developments made in CRS and EGT system enables OEMs to achieve further more stringent emission norms and adopt the environmental protection compliances. Today’s CRS systems are the most advanced generation fuel injection systems providing further high injection pressures, wide multiple injections capability with shorter dwell periods enabling real smoother Digital Rate Shaping (DRS) and injection control that benefits not only the engine combustion performance but also enables smarter thermal management of modern exhaust systems while meeting stringent emission compliances and achieving future CO2 reductions goal.
Technical Paper

Cost Effective Techniques to Maximize Benefits of Entry Segment Full Hybrid Electric Vehicle without Engine Downsizing

2015-01-14
2015-26-0113
Hybridization with engine downsizing is a regular trend to achieve fuel economy benefits. However this leads to a development of new downsized engine which is very costly and time consuming process, also engine downsizing demands for expensive higher power electric system to meet performance targets. Various techniques like gear ratio optimization, reducing number of gears, battery size and control functionalities optimization have been evaluated for maximum fuel economy keeping system cost very low and improving vehicle performance. With optimized gear ratios and reduced number of gears for parallel hybrid, it is possible to operate the engine in the best efficiency zones without downsizing. Motor is selected based on power to weight ratio, gradient requirements, improved acceleration performance and top speed requirement of vehicle in EV mode.
Technical Paper

Customized and Market Specific Thermal Robust Clutch System Solution

2021-09-21
2021-01-1239
The goal of reducing fuel consumption and CO2-Emission is leading to turbo-charged combustion engines that deliver high torque at low speeds (down speeding). To meet NVH requirements damper technologies such as DMF (Dual Mass Flywheel) are established, leading to reduced space for the clutch system. Specific measures need to be considered if switching over from SMF (Single Mass Flywheel) to DMF [8]. Doing so has an impact on thermal behavior of the clutch system, for example due to reduced and different distribution of thermal masses and heat transfer to the surroundings. Taking these trends into account, clutch systems within vehicle powertrains are facing challenges to meet requirements e.g. clutch life, cost targets and space limitation. The clutch development process must also ensure delivery of a clutch system that meets requirements taking boundary conditions such as load cycles and driver behavior into account.
Technical Paper

Design of Door Latching and Locking Systems for Crashworthiness

2008-01-09
2008-28-0058
Several sub-systems in a vehicle contribute to vehicle crashworthiness. One such system is the door latch and locking system. Correct functioning of this system is critical for facilitating occupant evacuation and preventing occupant ejection during crashes. Special care needs to be taken during vehicle safety development to achieve the desired intent. In crashes, it is observed that door opening or locking mainly occurs on account of inertial loads and deformation of the door structure. This paper studies the possible failure modes and their causes. Some likely solutions have also been discussed with a case study.
Technical Paper

Development of Dc Motor based E-Shift Mechanism for Manual Transmission

2015-04-14
2015-01-1095
Transmission designs over the years have evolved significantly achieving more efficiency in terms of fuel economy, comfort and reduction in emissions. This paper describes a Dc motor based E-shift mechanism which automates an existing manual transmission and clutch system to give comfort and ease for gear shifting. The basic idea of E-shift mechanism is to make hassle free gear shifting of manual transmission at sole command of driver without any control strategy for automatic shifting as in case of Automated Manual transmission (AMT). The E-shift mechanism will eliminate the manual efforts required for pressing clutch pedal and shifting gear, giving more ease while driving. The developed mechanism can be retro fitted on existing manual transmission without any major modification at lower cost. The E-shift mechanism uses two actuators for gear shifting and one actuator for clutch actuation.
Technical Paper

Development of a Rapid Vehicle Steering Cooling System Using Thermoelectrics

2021-09-22
2021-26-0517
Nowadays automotive cabin comfort has become a necessity rather than an optional feature, with customers demanding more comfort features. Thermal comfort becomes an essential part of this expectation. Since steering wheel is the first surface that the driver will touch once he enters the vehicle, maintaining thermal comfort of steering wheel becomes important, especially in tropical countries like India where a car parked in hot weather can get significantly warm inside. In this work, two design concepts for automotive steering wheel thermal control based on thermoelectric effect are depicted along with a detailed mathematical model. Thermoelectric coolers were selected for this purpose as it is solid state, compact & scalable solution to achieve rapid cooling rates. This was the desired feature expected from an integration standpoint in automotive architecture.
Technical Paper

Digital Approach for Dynamic Balancing of Three Cylinder Gasoline Engine Crank-Train

2021-09-22
2021-26-0265
Because of ever increasing demand for more fuel efficient engines with lower manufacturing cost, compact design and lower maintenance cost, OEM’s prefer three cylinder internal combustion engine over four cylinder engine for same capacity, though customer demands NVH characteristics of a three cylinder engines to be in line with four cylinder engine. Crank-train balancing plays most vital role in NVH aspects of three cylinder engines. A three cylinder engine crankshaft with phase angle of 120 degrees poses a challenge in balancing the crank train. In three-cylinder engines, total sum of unbalanced inertia forces occurring in each cylinder will be counterbalanced among each other. However, parts of inertia forces generated at No.1 and No. 3 cylinders will cause primary and secondary resultant moments about No. 2 cylinder. Conventional method of designing a dynamically balanced crank train is time consuming and leads to rework during manufacturing.
Technical Paper

Effect of Welding Consumables on Static and Dynamic Properties of Representative Welded Joints for Chassis Structure

2021-09-22
2021-26-0259
Automotive suspension system forms the basis for the design of vehicle with durability, reliability, dynamics and NVH requirements. The automotive suspension systems are exposed to dynamic and static loads which in turn demands the highest integrity and performance against fatigue based metallic degradation. The current focus in automotive industry is to reduce the weight of the automotive parts and components without compromising with its static and dynamic mechanical properties. This weight reduction imparts fuel efficiency with added advantages. High-Strength Low Alloy steel (HSLA) offers optimum combination of ductility, monotonic and cyclic mechanical properties. Furthermore, welding processes offer design flexibility to achieve robust and lightweight designs with high strength steels.
Technical Paper

Effects of Environmental Factors on Flexural Properties of Long Fiber Reinforced Polymer Composite

2021-09-22
2021-26-0257
Environmental regulation, operating cost reduction and meeting stringent safety norms are the predominant challenges for the automotive sector today. Automotive OEMs are facing equally aggressive challenges to meet high fuel efficiency, superior performance, low cost and weight with enhanced durability and reliability. One of the key technologies which enable light weighting and cost optimization is the use of fiber reinforced polymer (FRP) composite in automotive chassis systems. FRP composites have high specific strength, corrosion and fatigue resistance with additional advantage of complex near net shape manufacturing and tailor made properties. These advantages makes FRPs an ideal choice for replacing conventional steel chassis automotive components. However, FRP’s face challenges from operating environment, in particular temperature and moisture.
Technical Paper

Evaluation of Ferritic Stainless Steel Performance in Exhaust Environment

2022-10-05
2022-28-0344
In current scenario, there is trend to use stainless steels in place of carbon steels and aluminized carbon steels for Exhaust application. In response to changing regulatory requirements and durability performance requirements of exhaust systems, the ferritic stainless steels are proven to be best suited for the purpose. There are multiple ferritic stainless steels available as options for exhaust system. The material in an exhaust system is subject to heat, oxidation, corrosion and condensate. These environment condition demands that exhaust material should possess high temperature corrosion and oxidation resistance along with required mechanical performance such as vibration and thermo-mechanical load cycles. This work is an attempt to develop simulated test methods for corrosion and thermal environment and evaluate performance of commonly used ferritic stainless steels.
Technical Paper

Evaluation of Potential Benefit of 6 × 2 Over 6 × 4 Drive Mode to Improve the Fuel Economy on Heavy Commercial Vehicle

2009-04-20
2009-01-1359
Reduction in the drivetrain losses of a vehicle is one of the important contributing factors to amplify the fuel economy of vehicle, particularly in heavy commercial vehicle. The conversion of 6 × 4 drive vehicle into 6 × 2 drive has a benefit of improving the fuel economy of a vehicle by reducing the drivetrain losses occurring in the second rear axle. It was cultured by calculation that in 6 × 2 drive the tractive force available at the wheels, of heavy commercial vehicle with GVW of 44 tons and above, will be much higher than the frictional force transmission capacity of tires, when the engine is producing peak torque on the driving duty cycle like going on steep gradient road. In such situations the tires will start to slip and may result in deteriorating the fuel economy and excessive tire wear. On the other side the flat road driving duty cycle in 6 × 2 drive will give better fuel economy than 6 × 4 drive.
Technical Paper

Grit Blasting on Synchronizer - To Resolve Early Crashing Complaint

2017-06-05
2017-01-1769
In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
Technical Paper

How to Enhance Gear Shift Feel of North-South Transmission Layout

2016-10-17
2016-01-2357
Globalization has intensively driven focus of car manufacturers on comfort and ergonomics. Luxuries are becoming essential features of product mix. Customer’s expectations and desires are changing because of cut throat competition and increasing variety of options. In order to sustain in marketplace, OEM has to be competitive while providing features and options with appropriate quality. Vigorously changing dimensions and definitions of comfort level, luxury and aesthetics has driven the intense focus of OEM’s on customer touch points, customer touch points are those components of vehicle which customer accesses while driving the vehicle and they play vital role in generating drive feel of vehicle. Customer’s drive feel about the vehicle is most complex and critical factor and is of subjective nature. Now days drive feel is an important aspect of product differentiation. Gear shift feel is very crucial touch point in overall drive feel of vehicle.
Technical Paper

Improvement in Shift Quality in a Multi Speed Gearbox of an Electric Vehicle through Synchronizer Location Optimization

2017-03-28
2017-01-1596
Electrical and Series Hybrid Vehicles are generally provided with single speed reduction gearbox. To improve performance and drive range, a two-speed gearbox with coordinated control of traction motor and gearshift actuator is proposed. For a two-speed gearbox, gearshift without clutch would increase the shifting effort. Active Synchronization is introduced for a smoother gearshift even without clutch. The quality of gearshift is considered as a function of applied shift force and time taken. To enhance the quality of the gearshift further, the location of the synchronizer in the transmission system is optimized. To validate the improvement in the quality of the gearshift, a mathematical model of the two-speed gearbox incorporating proposed location of synchronizer assembly along with active synchronization is developed. The qualitative and quantitative analysis of the results achieved is presented.
Technical Paper

Methodology for Measurement of Inherent Driveline Frictional Force for a Vehicle in Coasting Mode

2009-04-20
2009-01-0416
Today, with the introduction of Euro-III engines it is possible to achieve almost zero fuel consumption in coasting mode. This means more the distance covered in coasting mode better will be the overall fuel economy of the vehicle. In turn, distance covered by the vehicle in coasting mode depends on the driveline frictional losses i.e. for a particular moving inertia of a vehicle higher the inherent driveline frictional loss lesser will be the distance negotiated by the vehicle. The proposed methodology has been established to determine this inherent frictional force component acting all across the driveline while the vehicle is run in coasting mode under no-load condition. The application of this methodology is limited to vehicles with manual transmission.
Technical Paper

Methodology to Derive RLD Based Durability Test Schedule for Gearbox Oil Seals

2021-09-22
2021-26-0461
Oil seal leakage is one of the major failure mode in gearbox / transaxle. Oil seal failures can be due to various reasons like high temperature, insufficient lubrication, failure due to external environment, incorrect fitment etc. Major reason for oil seal failure is insufficient oil flow inside gearbox when vehicle is running on gradient for long duration. When vehicle is running in hilly region, transmission will get incline leading to oil deficiency at one half of the transmission. Oil seal in this location will not get sufficient lubrication and will run dry. Also, there will be rise in local temperature at seal lip to shaft interface leading to failure of oil seal lip. Subsequently, oil leakage from transmission will start from this location when vehicle is running in different terrain. Due to continuous seepage, oil quantity in the transmission will get reduced and may lead to gear failure or seizure of bearing.
Technical Paper

Model-Based System Engineering Approach for Steering Feel Simulation for Passenger Vehicles

2021-09-22
2021-26-0400
The basic function of steering system is to control the direction of the vehicle. The driver applies effort on the steering wheel and receives feedback through the steering system as a result of tire to road interaction. This feedback consists of a haptic (force) feedback which is directly felt by the driver and it is termed as steering feel. Precise steering feel gives better driving experience and is decisive factor for customer to buy a vehicle as well as for OEMs in building brand image. Along with steering parameters, suspension and tire parameters also has significant impact on steering feel. In past, modelling of the steering system was done at component level or with simplified vehicle system. Such approaches had not given accurate results of steering feel metric and resulted in incorrect steering design parameter selection. In order to replicate actual vehicle characteristics, complex and detailed modelling of steering, tire and suspension subsystems is necessary.
X