Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

A Multiphysics Approach for NVH Analysis of PMSM Traction Motor

2021-09-22
2021-26-0520
Electric vehicles are fast expanding in market size, and there are increasing customer expectations on all aspects of the vehicle, including its noise and vibrational characteristics. Irritable noise from traction motors account for around 15% of the overall noise in an electric vehicle, and thus, has a need to be analysed and studied. This study focuses on identifying the critical vibro - acoustic orders for an 8 pole PMSM (Permanent Magnet Synchronous Motor) for three cases - healthy, with static eccentricity and with dynamic eccentricity. PMSM motors are widely used for traction and other applications due to their higher power density along with compact size. A coupled approach between electromagnetic and vibro - acoustic simulation is deployed to characterise the NVH behaviour of the motor.
Technical Paper

Effect of Carbon Black Fraction in Natural Rubber for Automobile Rubber Components

2009-04-20
2009-01-1295
Large number of studies have been carried out and references are available on the use of synthetic rubber with non-carbon black fillers. Use of carbon black reinforced natural rubber is very common in automotive applications especially suspension top cups, cab mounts, suspension bushes, engine mounts etc Carbon black plays key role in the alteration of the rubber compound properties to suit the end product requirements for hysteresis, stiffness, hardness, compression set etc. This paper gives experimental details, results, and conclusions on and effect of carbon black in natural rubber compound. Carbon black reinforced natural rubber formulations were made and keeping all other ingredients of the formulation constant including type of carbon black and by varying only the amount of carbon black dosage. Since the rubber components call for different specifications based on the end product requirements, it is not possible to have common rubber formulation for all the end products.
Technical Paper

Effect of Excitation Methods on Experimental Modal Analysis of Passenger Car Tire

2013-11-27
2013-01-2854
Tire modal performance plays an important role in passenger car NVH refinement which includes road induced noise. Work done in the past, enumerates testing methods, excitation technique applied and boundary conditions. It also includes Mode shapes, analysis results and study of variables affecting the modal performance of passenger car Tire. Here, in this paper an attempt is made to compare the experimental modal analysis results, obtained using two different excitation techniques for exciting tire. In the experimental modal analysis under discussion, the passenger car tire of type 175/65R14, was inflated up to 2.2 bar (32psi) pressure in free-free condition. Impact Hammer and Electro-dynamic shaker were used to excite the tire structure in radial direction. Single Input Multiple Output technique was used for excitation and response signal acquisition.
Technical Paper

Effects of Environmental Factors on Flexural Properties of Long Fiber Reinforced Polymer Composite

2021-09-22
2021-26-0257
Environmental regulation, operating cost reduction and meeting stringent safety norms are the predominant challenges for the automotive sector today. Automotive OEMs are facing equally aggressive challenges to meet high fuel efficiency, superior performance, low cost and weight with enhanced durability and reliability. One of the key technologies which enable light weighting and cost optimization is the use of fiber reinforced polymer (FRP) composite in automotive chassis systems. FRP composites have high specific strength, corrosion and fatigue resistance with additional advantage of complex near net shape manufacturing and tailor made properties. These advantages makes FRPs an ideal choice for replacing conventional steel chassis automotive components. However, FRP’s face challenges from operating environment, in particular temperature and moisture.
Technical Paper

Engine Mount Stiffness Effect on Joint Integrity and Durability

2021-09-22
2021-26-0514
Powertrain mounts locations and stiffness in vehicle plays very important role in improving vehicle noise and vibration, which is caused by engine firing forces and road disturbances. Once locations are finalized, based on initial calculation and packaging then it is very much critical to play with mount stiffness to achieve required NVH level in vehicle. This paper describes the effect of mount stiffness on the bolted joint integrity. Stiffness fine tuning is done to improve vehicle level NVH and various iteration are done with change in stiffness values of A, B and C mounts. When stiffness specifications are finalized, it is recommended to acquire road load data on the finalized stiffness mount and check for bolted joint integrity since load signature is varying significantly on mount w.r.t stiffness change. If we change mount stiffness value from 128N/mm to 98N/mm, then loads on particular mount is getting increased from 4.5KN to 6.5KN in one of the track testing.
Technical Paper

Experimental Analysis of HVAC System Level Noise in Mobile Air-Conditioning (MAC) System

2020-08-18
2020-28-0035
With the advent of new technologies and rigorous research and development work going on vehicle engines, cars are becoming quieter and more refined than ever before. This has led to the observance of subjective noises being audible to passenger compartment which were earlier masked behind engine noise. The vehicle HVAC system has several moving parts and transient flow of refrigerant which can cause certain types of irritant noise. Thus having a refinement in of air-conditioning (AC) system would aid us in cutting down on this parasitic noise source. Thus noise refinement should be one of the important parameters during the design and development of the Heating, Ventilation and Air-Conditioning (HVAC) system for a vehicle program.
Technical Paper

Experimental Analysis of Steering System Moan Noise

2021-09-22
2021-26-0307
Steering system is responsible for providing a precise directional control to the vehicle. The Hydraulic Power Assisted Steering (HPAS) system is commonly used in passenger cars and commercial vehicles due to low cost. Power steering pump develops and delivers required pressure to provide assistance while steering. It reduces the effort required to steer the vehicle. Steering pump (generally vane type) is a critical part providing hydraulic pressure assistance to rack and pinion or gear box. Basically the hydraulic pump noise can be classified as ‘Moan Noise’ and ‘Whine Noise’. The noise generated by power steering pump pressure pulsation is termed as ‘Moan’ and ‘Whine’ based on operational induce frequency. As power train becomes quieter, it becomes more perceivable at typical engine operating speed range and gives impression of poor refinement and quality.
Technical Paper

Optimization of an Air Intake System to Reduce Multiple Whoosh Noises from an Engine

2013-04-08
2013-01-1714
The direct injection common rail technology coupled with variable geometry turbocharger on the modern diesel engine has improved the diesel engine performance (power and torque) greatly as compared to the conventional diesel engine. Diesel engine performance is greatly dependent on the abundant air availability. And it is facilitated by Variable Geometry Turbocharger (VGT) in modern engines. The engines with variable geometry turbocharger offer quick response to the demand in various driving conditions especially in transient driving conditions. During transient driving conditions, the air intake system experiences a rapid air flow pressure and velocity changes. The pressure differentials across air intake system during transient events allow flow direction changes in the system. This kind of phenomenon generates unusual “Multiple Whoosh” noises in the air intake system of the sport utility vehicle engine.
Technical Paper

Optimizing an Automotive HVAC System for Enhancement of Acoustic Comfort

2021-09-15
2021-28-0147
The Indian automotive industry is going through a rapid transformation phase. Regulatory emission norms such as, migration from BSIV to BSVI engine, increased adoption of μ-hybrid, full electric and autonomous cars are examples of such rapid transformation. The upgradation of internal combustion engines for compliance with new regulatory norms (e.g., from BSIV to BSVI) has caused a significant change in the automotive acoustic performance. As the powertrain system are being upgraded and getting quieter, the on-board Heating, Ventilation and Air-Conditioning system (HVAC) system emerges as one of the prominent noise sources which strongly influences overall refinement levels inside the cabin. This in turns is affecting overall feeling of passenger’s comfort. The HVAC system of an automobile is a compact and yet a complex system designed to provide thermal comfort inside the car cabin.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Practical Approach for Vehicle HVAC Noise Reduction and Comfort Improvement

2011-05-17
2011-01-1592
Comfortable cabin environment from temperature, noise and vibration point of view is one of the most desirable aspects of any vehicle operating in hot or cold environment. Noise generated from HVAC system is one of the most irritating phenomena resulting in customer dissatisfaction and complaints. It becomes absolutely necessary to have low HVAC noise levels when the target market has hot weather all round the year. Balance between control of temperature in desired way with least possible noise and vibration is the key for HVAC performance optimization within constrains posed by design and cost. This paper describes the approach for NVH refinement of front HVAC system proposed for a vehicle with limited off-road capability for which packaging constraints and late changes related to airflow and HVAC unit design for meeting comfort and crash requirements resulted in deterioration of noise and vibrations while operation.
Technical Paper

Prediction and Resolution of Vehicle In-Cab Noise due to Powertrain Induced Excitations

2019-01-09
2019-26-0177
Vehicle NVH is one of the critical performance quality parameter and it consists of vibration levels at tactile points and noise levels at ear locations for different vehicle running conditions. There are many sources of noise and vibration in a vehicle, and powertrain is one of the main source. Therefore, it is important to understand and resolve powertrain induced noise and vibration issues at early design stage with efficient simulation techniques. The work presented here deals with the use of systematic CAE approach for prediction and resolution of structure borne in-cab noise due to powertrain excitations. During NVH testing of SUV vehicle, boom noise is observed at low frequency. Detailed full vehicle level simulation model consisting of vibro-acoustic trimmed BIW, front and rear suspension, and driveline with powertrain modal model is built.
Technical Paper

Radiated Noise Reduction in a Single Cylinder Direct Injection (DI) Naturally Aspirated (NA) Engine

2011-05-17
2011-01-1503
Small goods carrier and passenger vehicles powered by Naturally Aspirated (NA) Direct Injection (DI) diesel engines are popular in Indian automobile market. However, they suffer from inherently high radiated noise and poorly perceived sound quality. This paper documents the steps taken to reduce the radiated noise level from such an engine through structural modifications of major noise radiating components identified in the sound power analysis. The work is summarized as follows; Baseline radiated noise measurements of power train and identification of major noise sources through sound intensity mapping and noise source ranking (NSR) in an Engine Noise Test Cell (ENTC) Design modifications for identified major sources in engine structure Vehicle level assessment of the radiated noise in a Vehicle Semi-Anechoic Chamber (VSAC) for all the design modifications. A reduction of 7 dB at hot idle and 4 - 8 dB in loaded speed sweep conditions was observed with the recommended modifications.
Technical Paper

Rubber Tire Characterization Using Experimental and Computational Methods in Crash Applications

2015-01-14
2015-26-0170
Tire plays an important role in frontal impacts as it acts as a load path to transfer loads from barrier to side sill or rocker panels of passenger vehicles. In order to achieve better correlation and more reliable predictions of vehicle crash performance in CAE simulations, modeling techniques are continuously getting refined with detailed representation of vehicle components in full vehicle crash simulations. In this study, detailed tire modeling process is explored to represent tire dynamic stiffness more accurately in frontal impact crash simulations. Detailed representation of tire internal components such as steel belts, body plies, steel beads along with rubber tread and sidewall portion have been done. Passenger car tubeless radial tire was chosen for this study. Initially, quasi-static tensile coupon tests were carried out in both longitudinal and lateral direction of tread portion of tire.
Technical Paper

Sensitivity of LCA Bush Stiffness in Judder while Braking for Twist Blade Type Suspension in Passenger Cars

2021-09-22
2021-26-0513
This paper deals with specific NVH related issues attributed due to LCA bush stiffness and Brake rotor DTV. While the focus is on the cause of such vibration (judder while braking at 120 kmph), the presentation goes to the root-cause of judder and how various suspension/tire/brake components contribute to the generation/amplification of such vibration. Results are presented for twist blade types of vehicle suspensions, along with procedures that were developed specifically for this study and some of the actual case study. DTV-Disk thickness variation
Technical Paper

Severe Plastic Deformation Treatment for Geometry and Residual Stress Modification of Weld Toe

2023-05-25
2023-28-1356
Structural automotive components are subjected to fatigue damage under cyclic stresses and strains. The fatigue damage initiates at stress levels lower than the elastic limit of the material and results in cracks. The Initial fatigue cracks are difficult to detect, such cracks can develop rapidly and cause sudden and brittle failure in structures. Many structural automotive components are fabricated involving weld induced local conditions such as geometry of weld toe and localized tensile residual stresses. These conditions are favorable for initiation of fatigue damage at weld toe. In current work, sever plastic deformation (SPD) which is based on high frequency impact treatment using ultrasound energy was applied on weld toe of representative weld joints. The effect of SPD on weld toe geometry modification, microstructure and residual stresses were evaluated. Microscopic and X-ray diffraction techniques were used to study the effects of SPD.
Technical Paper

Simulation Techniques for Rubber Gasket Sealing Performance Prediction

2021-09-22
2021-26-0388
Engine performance and emission control are key attributes in the overall engine development in which sealing of the mating components plays an important role to achieve the same. Rubber gaskets are being used for sealing of different Internal Combustion (IC) engine components. Gasket sealing performance needs to be ensured at initial development stage to avoid the design changes at the later part of development cycle. Design changes at later stage of development can potentially influence parameters like optimization, cost and time to market. Demand of utilization of virtual tools (front loading) is growing with the increasing challenges like stringent product development cycle time and overall project cost. This paper describes a procedure to simulate the rubber gasket and groove for different material conditions (dimensional tolerances). This entire simulation is divided into two phases. In the first phase of the simulation, Load Deflection curve (LD curve) is established.
Technical Paper

The Influence of Torsional Vibrations on the Longevity of Manual Transmission Synchronizers and the Durability of Clutch Dampers

2024-01-25
2024-01-5010
This study delves into the impact of engine torsional vibration on transmission component failures, specifically synchronizers and clutch damper springs. Synchronizers are crucial in ensuring smooth gear shifts by synchronizing the rotational speeds of the transmission input and output shafts. While design factors such as geometry, friction material, and lubrication are often attributed to synchronizer failures, engine-generated torsional vibrations significantly affect their lifespan. Clutch damper mechanisms integrated into the clutch disc are designed to mitigate these vibrations. This research employs 1D powertrain simulation modeling to predict powertrain torsional vibration behavior. Additionally, rig tests are conducted to simulate vehicle-level angular accelerations and examine the impact of torsional vibrations on synchronizer life.
X