Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Detailed Study to Evaluate Sporty Sound Character of Passenger Cars

2024-01-16
2024-26-0207
Sound signature design is gaining more importance within global auto manufacturers. ‘Sportiness’ is one of the important point to consider while designing a sound character of a car for passionate drivers and those who love aggressive driving. Nowadays automobile manufacturers are more focused in developing a typical sound signature for their cars as a ‘unique design strategy’ to attract a niche segment of the market and to define their brand image. Exhaust system is one of the major aggregate determining the sound character of ICE vehicles which in turn has the direct influence on the customer perception of the vehicle and the Brand image and also the human comfort both inside and outside the cabin. This research work focuses on novel approaches to identify frequency range and order content by a detailed study of subjective feelings based on psycho-acoustics. Sound samples of various benchmark sporty vehicles have been studied and analyzed based on sound quality parameters.
Technical Paper

Challenges to Meet New Noise Regulations and New Noise Limits for M and N Category Vehicles

2013-01-09
2013-26-0107
New noise regulations, with reduced noise limits, have been proposed by UN-ECE. A new method which aims at representing urban driving of the vehicles more closely on roads is proposed and is considerably different from the existing one (IS 3028:1998). It is more complex; we also found that some of the low powered vehicles can not be tested as per this method. The paper proposes ways of improvement in the test method. The new noise reduction policy options will have a considerable impact on compliance of many categories of vehicles. Technological challenges, before the manufacturers, to meet all performance needs of the vehicle along with the cost of development will be critical to meet the new noise limits in the proposed time frame.
Technical Paper

Characterization of PU Foam for High Temperature Applications in Automobiles

2014-04-01
2014-01-1035
Due to continuous demands from OEM's to reduce weight and make more compact vehicles, high heat generation from vehicle has become common phenomenon. Thermal insulation is a need of the hour to cater to such demands. The temperature rise is more critical around engine areas. OEM's use many design solutions to cater to such heat build up's. One of the design solutions includes use of thermally insulating materials e.g. Foams, insulating fabrics etc… First section of this paper deals with comparative study of polyurethane (PU) soft foam and rigid skin polyurethane foam. To define the base line, the samples were subjected to various tests to determine physical, thermal and chemical properties. Also both the types of foams were subjected to high temperature and low temperature heat ageing. From the experiments, it was observed that soft PU foam provides better re-bounce property than rigid skin PU foam.
Technical Paper

Comparative Studies of Adhesive Joints in Automotive

2014-04-01
2014-01-0788
Use of adhesives in automotive require in-depth material, design, manufacturing & engineering knowledge. It is also necessary to understand functional requirements. For perfect and flawless adhesive joinery, the exact quantity of adhesive, its material composition, thickness of adhesive layer, substrate preparation methods for adhesive bonding, handling and curing time of the adhesive have to be studied & optimized. This paper attempts to describe different aspects of adhesive bonding in automotive industry to include: Selection of adhesives based on application and design of the components, surface preparation of adherend, designing of adhesive joint, curing conditions of adhesives, testing and validation of adhesive joints. Emphasis was given to study & verify the performance of different adhesive joints to meet end product requirements. Samples were prepared with a variety of adhesive and adherend combinations.
Technical Paper

Lubrication Evaluation of EV Transmission

2024-01-16
2024-26-0328
Advent of EV powertrain has considerable effect on transmission development activities as competed to regular ICE transmission. Conventional ICE transmission and the transmission for an e-powertrain differ on fundamental level. The conventional transmission has number of gear ratios, shift mechanism which enables the transmission to deliver a smooth power output as per demand from the driver. Whereas the e-powertrain transmission is mostly a single gear ratio transmission (reducer) which primarily depends on speed and torque variation from the motor to cater the driver requirement. Hence, the operating speeds of such e-transmissions can vary from 0 to 20000 rpm in both forward and reverse directions. Such a large speed variation as compared with conventional transmission calls for special attention towards the lubrication of internal components. High speeds and lower oil viscosities tend to disrupt the oil films in between contact surfaces causing metal to metal contact.
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Numerical Approach to Welding Process and its Integration in Assessment of Fatigue life of Component

2021-09-22
2021-26-0357
Welding is one of the most convenient and extensively used manufacturing process across every industry and is recognized as a cost effective joining technique. The root cause of most of the fabricated structural failures lies in the uncertainties associated with the welding process. It is prone to generate high residual stresses due to non-volumetric changes during heating and cooling cycle. These residual stresses have a significant impact on fatigue life of component leading to poor quality joints. To alleviate these effects, designers and process engineers rely upon their experience and thumb rules but has its own limitations. This approach often leads to conservative designs and pre-mature failures. Recent advances in computational simulation techniques provide us opportunity to explore the complex phenomenon and generate deep insights. The paper demonstrates the methodology to evaluate the residual stresses due to welding in virtual environment.
Technical Paper

Tweaking Elastomer by Addition of Nano Silica in Formulation

2024-01-16
2024-26-0197
The art of rubber formulation science always has a scope for fine-tuning with changing the parameters like base polymer grade selection, filler selection, curing system/cross link density, manufacturing methods, and many. Hence forth the filler manufacturer arrived differentiation of the filler already, this paper provides a description of rubber formulation tuning for damped vibration automotive applications. Acicular spiky spherical and hollow spherical nano silica selected as filler. With the thorough knowledge of elastomeric formulation and with doping different new selected silica grades, an optimized DOE was done. New formulation development was focused on isolation characteristics without affecting other necessary properties. The different inputs for finite element calculations was studied with the effects of doping different fillers and also studied the resultant virtual output in damping coefficients.
Technical Paper

Virtual Road Torque Data Collection

2019-01-09
2019-26-0289
The traditional method of collecting the Road Torque Data of a vehicle is by instrumenting and running the vehicle on different road terrains. Every time, physical testing becomes tedious & most challenging task due to unavailability of unit under tests, kind of resource required and so on. However, in view of response to the fast emerging technology & limit less competition, it has become mandatory to develop & launch products in market within no time. In recent times, there is increased demand for physical road torque data measurements for a vehicle program based on its application and different powertrain configurations, which clearly shows that unless we front load the data to design it is practically impossible to meet the deadlines. Each of these measurements cost and consumes valuable resources of the company in collecting and analyzing the data.
X