Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Cloud Point Depressant Response Effects in Ultra-Low-Sulfur Diesel Fuel

2005-10-24
2005-01-3898
Cloud point depressants (CPD) have been successfully used for many years in low-sulfur diesel fuels. For over ten years, custom-designed, specialty polymer chemistry has enabled refiners to meet cloud point (CP) guidelines with substantially less kerosene. This translates into greater refined yields through cut-point adjustment upgrades and the potential for diverting kerosene to more lucrative market opportunities, such as jet fuel. The practice of cut-point downgrades to gas oil can be costly because diesel fuel generally has greater value. Kerosene dilutions have historically been as high as 30%-40% by volume with low-sulfur diesel fuels [1, 2]. While kerosene addition enables fuels to reach CP guidelines, it may negatively impact the fuel's energy content, cetane number, lubricity, flash point and density. Properly designed CP additives are able to substantially reduce or even eliminate the need for kerosene, thus substantially reducing refinery costs.
Technical Paper

Cloud Point Depressants and their Effect on Diesel Fuel Properties

1998-10-19
982575
Many marketers of branded diesel fuels are introducing a “premium” diesel fuel grade. The National Conference on Weights and Measures is recommending that one of the criteria for marketing a fuel as “premium” is that it have a lower cloud point or alternatively a reduced low temperature flow test (LTFT) failure point [1]. However, waxy crudes and process limitations make it difficult for refiners to economically make very low cloud point diesel fuel. Fortunately, cloud point depressants (CPDs) can overcome these limitations. However, refiners are concerned about the effect cloud point additives have on other diesel fuel properties. We found that cloud point depressants allow refiners to meet low temperature specifications while being neutral or beneficial to other diesel fuel properties.
Technical Paper

Combustion Modeling of Soot Reduction in Diesel and Alternate Fuels using CHEMKIN®

2001-03-05
2001-01-1239
A new gas phase kinetic model using Westbrook's gas phase n-heptane model and Frenklach's soot model was constructed. This model was then used to predict the impact on PAH formation as an indices of soot formation on ethanol/diesel fuel blends. The results were then compared to soot levels measured by various researchers. The ignition delay characteristics of ethanol were validated against experimental results in the literature. In this paper the results of the model and the comparison with experimental results will be discussed along with implications on the method of incorporation of additives and alternative fuels.
Technical Paper

Controlling the Corrosion of Copper Alloys in Engine Oil Formulations: Antiwear, Friction Modifier, Dispersant Synergy

2002-10-21
2002-01-2767
The next generation of engine oil under development has been formulated to maintain beneficial oil lubrication properties at increased engine operating temperatures, increased drain-oil intervals, and with the recirculation of exhaust gas back through the engine (EGR). These conditions result in the formation of degradation products from decomposed fuel, additives, and base oil. Decomposition products containing reactive sulfur can result in the corrosion of copper alloys. Sulfur-containing compounds currently used in these formulations can include zinc dithiophosphates (ZDP), molydithiophosphates, molydithiocarbamates, and molybdic acid/amine complexes, along with sulfur containing detergents and antioxidants. Interactions among these components and others in the formulation often determine the propensity of these formulations for corrosion. This paper will discuss the results of corrosion bench tests used to screen oil formulations for copper corrosion.
Technical Paper

Counteracting detrimental EGR effects with diesel fuel additive

2003-05-19
2003-01-1915
A new generation of fluid technology using novel diesel fuel detergent/dispersant chemistry provides a multitude of beneficial effects to the diesel engine, especially the latest model designs. In addition to improved injector, valve and combustion chamber deposit removal, the additive restores power, fuel economy, performance and emission levels1. Positive observations have also been documented along with improved performance concerning crankcase lube viscosity, soot loading and TBN retention. An even greater added benefit is the inherent capability of the fuel additive to deal with several EGR issues now prominent with the introduction of new engines. Recent research, reported herein, has uncovered the extensive efficacy of this chemistry for piston durability and neutralization of ring corrosion phenomena. All of the beneficial additive attributes are further enhanced with increased oxidative and thermal fuel stability and no loss of filterability.
Technical Paper

Developing Efficient Motorcycle Oils

2018-10-30
2018-32-0021
Motorcycle OEMs faced with stringent global fuel economy and emission regulations are being forced to develop new hardware and emissions control technologies to remain compliant. Motorcycle oils have become an enabling technology for the development of smaller, more efficient engines operating at higher power density. Many OEMs have therefore become reliant on lubricants to not only provide enhanced durability under more extreme operating conditions, but to also provide fuel economy benefits through reduced energy losses. Unlike passenger car oils that only lubricate the engine, motorcycle oils must lubricate both the engine and the drive train. These additional requirements place different performance demands versus a crankcase lubricant. The drive train includes highly loaded gears that are exposed to high pressures, in turn requiring higher levels of oil film strength and antiwear system durability.
Technical Paper

Effects of Lubricant Derived Chemistries on Performance of the Catalyzed Diesel Particulate Filters

2005-05-11
2005-01-2168
Forthcoming on-highway 2005/2007 European and North American emission regulations will require modern diesel engines to be equipped with Diesel Particulate Filters (DPF) capable of trapping up to 99% of the exhaust particulate matter. Since diesel particulates (soot) accumulate in the filter over time, the overall system needs to be regenerated by attaining the ignition temperature of soot, which in the presence of oxygen is >600 °C. Catalyzed DPFs regenerate at temperatures as low as ∼300 °C. One of the major issues facing OEMs, aftertreatment system manufacturers, and lubricant formulators is the potential effects of the lubricant-derived ash deposits and their impact on a pressure increase across filters, as well as overall filter performance and its service characteristics.
Technical Paper

Effects of PuriNOx™ Water-Diesel Fuel Emulsions on Emissions and Fuel Economy in a Heavy-Duty Diesel Engine

2002-10-21
2002-01-2891
The engine-out emissions and fuel consumption rates for a modern, heavy-duty diesel engine were compared when fueling with a conventional diesel fuel and three water-blend-fuel emulsions. Four different fuels were studied: (1) a conventional diesel fuel, (2) PuriNOx,™ a water-fuel emulsion using the same conventional diesel fuel, but having 20% water by mass, and (3,4) two other formulations of the PuriNOx™ fuel that contained proprietary chemical additives intended to improve combustion efficiency and emissions characteristics. The emissions data were acquired with three different injection-timing strategies using the AVL 8-Mode steady-state test method in a Caterpillar 3176 engine, which had a calibration that met the 1998 nitrogen oxides (NOX) emissions standard.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
Technical Paper

Low Speed Pre-Ignition (LSPI) Durability – A Study of LSPI in Fresh and Aged Engine Oils

2018-04-03
2018-01-0934
Downsized gasoline engines, coupled with gasoline direct injection (GDI) and turbocharging, have provided an effective means to meet both emissions standards and customers’ drivability expectations. As a result, these engines have become more and more common in the passenger vehicle marketplace over the past 10 years. To maximize fuel economy, these engines are commonly calibrated to operate at low speeds and high engine loads – well into the traditional ‘knock-limited’ region. Advanced engine controls and GDI have effectively suppressed knock and allowed the engines to operate in this high efficiency region more often than was historically possible. Unfortunately, many of these downsized, boosted engines have experienced a different type of uncontrolled combustion. This combustion occurs when the engine is operating under high load and low speed conditions and has been named Low Speed Pre-Ignition (LSPI). LSPI has shown to be very damaging to engine hardware.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

Lubricity and Injector Pump Wear Issues with E diesel Fuel Blends

2002-10-21
2002-01-2849
The search for alternative energy sources, particularly renewable sources, has led to increased activity in the area of ethanol blended diesel fuel, or E diesel. E diesel offers potential benefits in reducing greenhouse gases, reducing dependence on crude oil and reducing engine out emissions of particulate matter. However, there are some concerns about the use of E diesel in the existing vehicle fleet. One of the chief concerns of the use of E diesel is the affect of the ethanol on the lubricating properties of the fuel and the potential for fuel system wear. Additive packages that are used to formulate E diesel fuels can improve fuel lubricity and prevent abnormal fuel system wear. This work studies the lubricity properties of several E diesel blends and the diesel fuels that are used to form them. In addition to a variety of bench scale lubricity tests, injector pump tests were performed as an indicator of long term durability in the field.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Technical Paper

Review of Exhaust Emissions of Compression Ignition Engines Operating on E Diesel Fuel Blends

2003-10-27
2003-01-3283
Recently, research and testing of oxygenated diesel fuels has increased, particularly in the area of exhaust emissions. Included among the oxygenated diesel fuels are blends of diesel fuel with ethanol, or E diesel fuels. Exhaust emissions testing of E diesel fuel has been conducted by a variety of test laboratories under various conditions of engine type and operating conditions. This work reviews the existing public data from previous exhaust emissions testing on E diesel fuel and includes new testing performed in engines of varied design. Emissions data compares E diesel fuel with normal diesel fuel under conditions of different engine speeds, different engine loads and different engine designs. Variations in performance under these various conditions are observed and discussed with some potential explanations suggested.
Technical Paper

Soot-Related Viscosity Increase - Further Studies Comparing the Mack T-11 Engine Test to Field Performance

2005-10-24
2005-01-3714
SAE 2004-01-3009 reported on work conducted to investigate the correlation between the Mack T-11 laboratory engine tests and vehicle field tests. It concluded that the T-11 test provides an effective screening tool to investigate soot-related viscosity increase, and the severity of the engine test limits provides a substantial margin of safety compared to the field. This follow-up paper continues the studies on the 2003 Mack CV713 granite dump truck equipped with an AI-427 internal EGR engine and introduces experimentation on a 2003 CX613 tractor unit equipped with an AC-460P cooled EGR engine. The paper further assesses the correlation of the field trials to the Mack T-11 engine test and reviews the impact of ultra low sulfur diesel (ULSD) and prototype CJ-4 lubricant formulations in these engines.
Technical Paper

Study of Diesel and Ethanol Blends Stability

2003-10-27
2003-01-3191
Characteristics of E diesel, a fuel blend of diesel fuel and ethanol, are considered in a matrix of tests. One characteristic of particular concern and a subject of this investigation is that of stability. Methods to evaluate stability are looked at and compared in light of the potential for distillate and ethanol to separate under certain conditions. The quality of the fuel blend is enhanced by the use of enabling additives to ensure stability which necessitates development of a standard for assessment of the quality of stability. The properties of various base diesel fuels and their influence on stability are also studied. Other key characteristics are evaluated including viscosity, pour point, and oxidative stability.
Technical Paper

The Impact of Lubricant and Fuel Derived Sulfur Species on Efficiency and Durability of Diesel NOx Adsorbers

2004-10-25
2004-01-3011
Global emission legislations for diesel engines are becoming increasingly stringent. While the exhaust gas composition requirements for prior iterations of emission legislation could be met with improvements in the engine's combustion process, the next issue of European, North American and Japanese emission limits greater than 2005 will require more rigorous measures, mainly employment of exhaust gas aftertreatment systems. As a result, many American diesel OEMs are considering NOx adsorbers as a means to achieve 2007+ emission standards. Since the efficacy of a NOx adsorber over its lifetime is significantly affected by sulfur (“sulfur poisoning”), forthcoming reductions in diesel fuel sulfur (down to 15 ppm), have raised industry concerns regarding compatibility and possible poisoning effects of sulfur from the lubricant.
Technical Paper

Using Cloud Point Depressants Opportunistically To Reduce No.2 Diesel Fuel Cloud Point Giveaway

2001-05-07
2001-01-1927
Diesel fuel is a blend of various middle distillate components separated at the refinery. The composition and characteristics of the diesel fuel blend changes daily if not hourly because of normal process variation, changing refinery processing conditions, changing crude oil diet or changing diesel fuel and kerosene market conditions. Regardless of the situation going on at the refinery or the market, the resultant diesel fuel must consistently meet established cloud point specifications. To consistently meet the cloud point specifications, refiners are forced to blend their diesel fuels in such a way that the resultant blend is always on the low side of the cloud point specification even when the refining process adversely changes the fuel characteristics. This practice has the effect of producing several degrees of cloud point “giveaway” when the refinery is not experiencing adverse swings in product quality.
X