Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

42V Power Control System for Mild Hybrid Vehicle (MHV)

2002-03-04
2002-01-0519
In the 42V Mild Hybrid System introduced into market by Toyota for the first time in the world, the crankshaft using belt(s) drives the motor/generator (MG). The set-up employs an inverter unit to control the MG electronically. This paper describes the system configuration, operations, characteristic features and development results of the new power control system. The focus is on the MG, the inverter-for-MG-control and energy regeneration, as well as DC/DC converter for the power supply to the 14V devices.
Technical Paper

A New V-8 Engine for the LEXUS LS 400

1989-09-01
892003
A new 4.0 liter V8 engine, 1UZ-FE, has been developed for the luxury sedan, LEXUS LS400. The engine has 4 camshafts and 32 valves, and weighs only 195 kg (430 lbs) having many light alloy components and carefully designed configurations. The appropriate engine displacement and high technology adopted throughout from design to manufacturing process enable the LS400 to run powerfully with excellent fuel economy and a pleasant sounds. It develops 250HP at 5600 rpm and 260ft-lbs of torque at 4400 rpm, and its fuel economy figure, well exceeds the EPA's tax charge level of 22.5mpg. These figures have been achieved through the newest technologies applied to every part of the design, such as: Well studied intake and exhaust systems, centrally located spark plug in the TOYOTA original four-valve combustion chamber, which has a narrow valve including angle, and low friction components like aluminum alloy valve lifters and well balanced moving parts.
Technical Paper

A Robustness-Focused Shape Optimization Method for Intake Ports

2009-06-15
2009-01-1777
Merging a CAE shape optimization system and a concept Taguchi method SN-ratio index, a robustness-focused automated shape optimization method has been developed. Applying this method to diesel intake ports, with mold position tolerance set as the error factor, SN-ratio was defined for swirl stability. As a result of the optimization provided by a multi-objective genetic algorithm, simultaneous improvement of flux, swirl rotation and SN ratio was achieved.
Technical Paper

A Study of Anticorrosive Technology in Super Long Life Coolant

2004-03-08
2004-01-0055
The protection of the environment has become a worldwide concern. To reduce the effects of engine coolant on the environment, ways to minimize the amount of coolant released into the environment were investigated. One option is to develop a super long-life coolant. The key issue in developing a long-life engine coolant is selecting an appropriate inhibitor. The inhibitor should be stable over time and completely anticorrosive. In general carboxylic acids are considered to be the class of inhibitors with the highest stability. However, various lab studies have shown the long-term use of monocarboxylic acid could form the foreign substance that causes blockage in radiators. Therefore, the mechanism leading to the formation of foreign substance was determined. A series of carboxylic acids and additives were evaluated. An optimum formulation was then determined, resulting in the development of the Super Long Life Coolant.
Technical Paper

A Study of Mechanism of Engine Idling Rattle Noise in Hybrid Transaxles

2020-04-14
2020-01-0421
Quietness is one of the most important characteristics for Hybrid Electric Vehicle quality. Reduction of the rattle noise caused by the torque fluctuation of an internal combustion engine can contribute to get a customer satisfaction. Toyota Hybrid System(THS) also has same requirement. Especially, the rattle noise during idling may happen discontinuously despite of periodical engine combustion excitation. It is necessary to study the mechanism and reduce the rattle noise. At lower engine torque range, decreasing the torsional damper’s stiffness can improve this condition as the manual transaxle done. However, the rattle noise can occur easily in conditions of relatively large torque spike inputs to the torsional system, such as the engine start/stop function of THS using the motor/generator in the transaxle.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Journal Article

A Study on Optimal Powertrain Sizing of Plugin Hybrid Vehicles for Minimizing Criteria Emissions Associated with Cold Starts

2018-04-03
2018-01-0406
Plugin hybrid electric vehicles (PHEVs) have several attractive features in terms of reduction of greenhouse gas (GHG) emissions. Compared to conventional vehicles (CVs) that only have an internal combustion engine (ICE), PHEVs have better energy efficiency like regular hybrids (HEVs), allow for electrifying an appreciable portion of traveled miles, and have no range anxiety issues like battery-only electric vehicles (BEVs). However, in terms of criteria emissions (e.g., NOx, NMOG, HC), it is unclear if PHEVs are any better than HEVs or CVs. Unlike GHG emissions, criteria emissions are not continuously emitted in proportional quantities to fossil fuel consumption. Rather, the amount and type of criteria emissions is a rather complex function of many factors, including type of fuel, ICE temperature, speed and torque, catalyst temperature, as well as the ICE controls (e.g., fuel-to-air ratio, valve and ignition timing).
Journal Article

An Application of Model Based Combustion Control to Transient Cycle-by-Cycle Diesel Combustion

2008-04-14
2008-01-1311
From the viewpoint of the global warming restraint, reduction of exhaust emissions from diesel engine is urgent demand. However, it needs further development in combustion control besides after treatment system. Larger amount of EGR (Exhaust Gas Recirculation) is effective to reduce NOx emission. On the other hand, in-cylinder physical conditions greatly influence on self-ignition and combustion process, especially low O2 fraction charged gas owing to excessive EGR causes misfire. A drastic solution for this problem, fuel injection timing should be optimally manipulated based on predicted ignition delay period before actual injection. For this purpose, Toyota has developed a model based diesel combustion control concept to avoid the misfire and to keep low emission combustion includes in transient condition.
Journal Article

An Application of a Model-Prediction-Based Reference Modification Algorithm to Engine Air Path Control

2017-03-28
2017-01-0586
In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits. Hence, it is quite beneficial to cultivate RG methodologies to deal with multiple references and constraints.
Technical Paper

Analysis for Vibration Caused by Starter Shaft Resonance

2016-04-05
2016-01-1319
It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration using virtual engine specifications and a virtual vehicle frame. In our former study, we showed the 1D physical power plant model with electrical starter, battery that can predict combustion transient torque, combustion heat energy and fuel efficiency. The simulation result agreed with measured data. For idling stop system, the noise and vibration during start up is important factor for salability of the vehicle. In this paper, as an application of the 1D physical power plant model (engine model), we will show the result of analysis that is starter shaft resonance and the effect on the engine mount vibration of restarting from idle stop. First, an engine model for 3.5L 6cyl NA engine was developed by energy-based model using VHDL-AMS. Here, VHDL-AMS is modeling language registered in IEC international standard (IEC61691-6) to realize multi physics on 1D simulation.
Technical Paper

Analysis of Degradation Mechanism of Lead-Free Materials

2009-04-20
2009-01-0260
The use of lead-free (Pb-free) solder and plating in onboard electronic components has accelerated rapidly in recent years, but solutions have yet to be found for the issues of whisker generation in tin (Sn) plating and crack initiation in Pb-free solder, despite widespread research efforts. Analysis of the whisker generation mechanism has focused on internal energy levels and crystal orientation, and analysis of the crack initiation mechanism in Pb-free solder has examined changes in the grain boundaries of Sn crystals.
Journal Article

Analysis of Influence of Snow Melting Agents and Soil Components on Corrosion of Decorative Chrome Plating

2016-04-05
2016-01-0539
The dissolution and exfoliation of chromium plating specific to Russia was studied. Investigation and analysis of organic compounds in Russian soil revealed contents of highly concentrated fulvic acid. Additionally, it was found that fulvic acid, together with CaCl2 (a deicing agent), causes chromium plating corrosion. The fulvic acid generates a compound that prevents reformation of a passivation film and deteriorates the sacrificial corrosion effectiveness of nickel.
Journal Article

Analysis of Piston Friction in Internal Combustion Engine

2013-10-14
2013-01-2515
The purpose of this study is to analyze the piston skirt friction reduction effect of a diamond-like carbon (DLC)-coated wrist pin. The floating liner method and elasto-hydrodynamic lubrication (EHL) simulation were used to analyze piston skirt friction. The experimental results showed that a DLC-coated wrist pin reduced cylinder liner friction, and that this reduction was particularly large at low engine speeds and large pin offset conditions. Friction was particularly reduced at around the top and bottom dead center positions (TDC and BDC). EHL simulation confirmed that a DLC-coated wrist pin affects the piston motion and reduces the contact pressure between the piston skirt and cylinder liner.
Technical Paper

Analysis of Potassium Storage Components in NOx Catalysts Application of Analytical Techniques and DFT Computations to Catalytic Analysis

2004-03-08
2004-01-1494
By using analytical techniques (FT-IR, TG-MS, ICP) and DFT calculations, the potassium (K) used as a storage component in NOx Catalysts can be analyzed. The results from this study show that the, K exists as K2CO3, and that the amount, molecular structure, and thermal stability of K2CO3 are different, depending on the support material (ZrO2, Al2O3, or TiO2). If the amount of K that interacts with the support to form an inactive complex oxide is decreased, the amount of K2CO3 and NOx storage is increased. The amount of the inactive K varies with the basicity of the supports. K2CO3 that exists in unstable structures on the supports can be easy to react with NOx to form the nitrate. So, the higher the quantity of unstable K2CO3, the higher the NOx storage capacity. Based on these results, a development guideline was proposed to improve the NOx storage performance.
Technical Paper

Analysis of Sulfur-Related White Smoke Emissions from DPF System

2015-09-01
2015-01-2023
In a Diesel engine with a Diesel particulate filter (DPF) system, high-sulfur fuel causes white smoke containing odorous and harmful pollutants during DPF regeneration. This study investigates the conditions and mechanisms of sulfur-related white smoke generation. Engine and vehicle tests found that sulfur compounds emitted from the engine accumulated on the catalysts in the DPF system and were emitted as white smoke during DPF regeneration. The white smoke was observed when the catalyst temperature was more than 450°C, under conditions such as the early stage of DPF regeneration. Model gas tests were conducted to clarify the mechanism of the white smoke. It was found that SO2 emitted from the engine was oxidized to SO3 on the catalyst, which was then mainly absorbed on the oxidation catalyst support (Al2O3). Then, the absorbed SO3 was desorbed and converted into white smoke.
Journal Article

Application Study of Nonlinear Viscoelastic Constitutive Model for Dynamic Behavior of Suspension Arm Bushing

2016-04-05
2016-01-1375
Ride quality is an important purchasing consideration for consumers. It is typically defined in terms of noise, vibration and harshness. These phenomena are a result of vibrations caused at the engine/powertrain and from the road surface, which are transmitted to the passenger cabin. To minimize such vibrations, rubber parts are used extensively at mounting points for the cabin, such as engine mountings and suspension bushings. The vehicle development process increasingly requires performance testing, including rubber parts using CAE, prior to prototype evaluation. This in turn requires a rubber material model that can accurately describe dynamic characteristics of rubber components, particularly frequency and amplitude dependency.
Journal Article

Application of Reference Governor Using Soft Constraints and Steepest Descent Method to Diesel Engine Aftertreatment Temperature Control

2013-04-08
2013-01-0350
This paper considers an application of reference governor (RG) to automotive diesel aftertreatment temperature control. Recently, regulations on vehicle emissions have become more stringent, and engine hardware and software are expected to be more complicated. It is getting more difficult to guarantee constraints in control systems as well as good control performance. Among model-based control methods that can directly treat constraints, this paper focuses on the RG, which has recently attracted a lot of attention as one method of model prediction-based control. In the RG, references in tracking control are modified based on future prediction so that the predicted outputs in a closed-loop system satisfy the constraints. This paper proposes an online RG algorithm, taking account of the real-time implementation on engine embedded controllers.
Technical Paper

Cabin Comfort Improvement and Heating Energy Reduction under Cold-Condition by Using Radiative Heater

2022-03-29
2022-01-0202
Since the regulations of CO2 emissions have been tightened in each country recently, each automotive manufacturer has responded by bringing competitive technologies that maximize efficiency while promoting vehicle electrification such as xEV. Not only the efficiency, we need to meet or exceed occupant performance and comfort expectations. The climate control system expends a large amount of energy to keep a comfortable environment, having a significant impact on fuel consumption and EV driving range. Therefore, many manufacturers try to save energy and improve occupant comfort quickly by using not only the conventional convective heating by HVAC but also the conductive heating to heat the human body directly such as seat and steering wheel heater. In this study, a radiative heater, which is more efficient than a convective heating to warm anterior thigh and shin where a conductive heating cannot warm, was applied to vehicle.
Technical Paper

Characterization of Low Temperature Diesel Combustion with Various Dilution Gases

2007-04-16
2007-01-0126
The effects of intake dilution with various dilution gases including nitrogen, argon, and carbon dioxide on low temperature diesel combustion were investigated in a naturally aspirated DI diesel engine to understand the mechanism of the simultaneous reductions in smoke and NOx with ultra-high EGR. NOx almost completely disappears with the intake oxygen concentration diluted below 16% regardless of the kind of dilution gas. Smoke emissions decrease with increased heat capacity of the charged gas due to promotion of mixture homogeneity with longer ignition delays. Intake dilution with the 36% CO2 + 64% Ar mixture which has a similar specific heat capacity as N2 shows lower smoke emissions than with N2. Chemical kinetics analysis shows that carbon dioxide may help to reduce NOx and soot by lowering the reaction temperature as well as by changing the concentrations of some radicals or/and species related to soot and NOx formation.
Journal Article

Combustion Improvement of Diesel Engine by Alcohol Addition - Investigation of Port Injection Method and Blended Fuel Method

2011-04-12
2011-01-0336
Alcohol fuels that can be produced from cellulose continue to become more widely used in gasoline engines. This research investigated the application of alcohol to diesel engines with the aims of improving the combustion of diesel engines and of utilizing alternative fuels. Two methods were compared, a method in which alcohol is injected into the air intake system and a method in which alcohol is blended in advance into the diesel fuel. Alcohol is an oxygenated fuel and so the amount of soot that is emitted is small. Furthermore, blended fuels have characteristics that help promote mixture formation, which can be expected to reduce the amount of soot even more, such as a low cetane number, low viscosity, low surface tension, and a low boiling point. Ethanol has a strong moisture-absorption attribute and separates easily when mixed with diesel fuel. Therefore, 1-butanol was used since it possesses a strong hydrophobic attribute and does not separate easily.
X