Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Hydrogen Addition on Natural Gas HCCI Combustion

2004-06-08
2004-01-1972
Natural gas has a high auto-ignition temperature, requiring high compression ratios and/or intake charge heating to achieve HCCI (homogeneous charge compression ignition) engine operation. Previous work by the authors has shown that hydrogen addition improves combustion stability in various difficult combustion conditions. It is shown here that hydrogen, together with residual gas trapping, helps also in lowering the intake temperature required for HCCI. It has been argued in literature that the addition of hydrogen advances the start of combustion in the cylinder. This would translate into the lowering of the minimum intake temperature required for auto-ignition to occur during the compression stroke. The experimental results of this work show that, with hydrogen replacing part of the fuel, a decrease in intake air temperature requirement is observed for a range of engine loads, with larger reductions in temperature noted at lower loads.
Technical Paper

Exhaust-Gas Reforming of Hydrocarbon Fuels

1993-04-01
931096
This paper presents the findings of theoretical and practical studies of an exhaust-gas reforming process, as applied to hydrocarbon fuels. It is shown that hydrogen-containing gaseous reformed fuels can be produced by the interaction of hot combustion products and an n-heptane feedstock in a small-scale catalytic reforming reactor. Predicted and observed reformed fuel chemical compositions were found to correlate well at the lower reactor space velocities tested, where chemical equilibrium conditions can be closely approached. Under these conditions, respective hydrogen and carbon monoxide yields of around 32 and 20 volume per cent were obtained. Under certain conditions, it was found that carbon solids were deposited on the reforming catalyst. Measures taken to avoid this problem included changes in the reforming oxidant to fuel ratio, and the addition of excess steam to the oxidant composition.
Technical Paper

Performance, Emissions and Exhaust-Gas Reforming of an Emulsified Fuel: A Comparative Study with Conventional Diesel Fuel

2009-06-15
2009-01-1809
The fuel reforming technology has been extensively investigated as a way to produce hydrogen on-board a vehicle that can be utilized in internal combustion engines, fuel cells and aftertreatment technologies. Maximization of H2 production in the reforming process can be achieved when there is optimized water (steam) addition for the different reforming temperatures. A way to increase the already available water quantity on-board a vehicle (i.e. exhaust gas water content) is by using emulsified fuel (e.g. water-diesel blend). This study presents the effect of an emulsified diesel fuel (a blend of water and diesel fuel with an organic surfactant to make the mixture stable) on combustion in conjunction with exhaust gas assisted fuel reforming on a compression ignition engine. No engine modification was required to carry out these tests. The emulsified diesel fuel consisted of about 80% (mass basis) of conventional ultra low sulphur diesel (ULSD) fuel and fixed water content.
X