Refine Your Search

Topic

Search Results

Technical Paper

Adaptive PCCI Combustion Using Micro-Variable Circular-Orifice (MVCO) Fuel Injector – Key Enabling Technologies for High Efficiency Clean Diesel Engines

2009-04-20
2009-01-1528
This paper presents the latest results for a new high efficiency clean diesel combustion system – Adaptive PCCI Combustion (a premixed charge compression ignition mixed-mode combustion) using a micro-variable circular orifice (MVCO) fuel injector. Key characteristics of the new combustion system such as low NOx and soot emissions, high fuel efficiency, increased engine torque are presented through KIVA simulation results. While early premixed charge compression ignition (PCCI) combustion reduces engine-out NOx and soot, it's limited to partial loads by known issues such as combustion control, high HC and CO, and high pressure rise rate, etc. Conventional combustion is well controlled diffusion combustion but comes with high NOx and soot. Leveraging the key merits of PCCI and conventional combustion in a practical engine is both meaningful and challenging.
Technical Paper

An Angle of Attack Correction Scheme for the Design of Low Aspect Ratio Wings With Endplates

2002-12-02
2002-01-3292
Low aspect ratio wings are used extensively on open-wheeled race cars to generate aerodynamic downforce. Consequently, a great deal of effort is invested in obtaining wing profiles that provide high values of lift coefficient. If the wings are designed using 2-D methods, then it is necessary to take into account the change in operating angle of a typical airfoil section that occurs when it operates in the downwash generated by the wing. Accounting for this change during the design phase will ensure that the airfoil sections are optimized for their intended operating conditions. The addition of endplates to the wing serves to counteract the magnitude of the change in operating angle by effectively producing an increase in wing aspect ratio. During the design process at UIUC, an empirical method was used to provide an estimate of the effective aspect ratio of the wing and endplate combination.
Technical Paper

An Efficient and Unified Combustion Model for CFD of SI and CI Engine Operation

2017-03-28
2017-01-0572
In this work, an efficient and unified combustion model is introduced to simulate the flame propagation, diffusion-controlled combustion, and chemically-driven ignition in both SI and CI engine operation. The unified model is constructed upon a G-equation model which addresses the premixed flame propagation. The concept of the Livengood-Wu integral is used with tabulated ignition delay data to account for the chemical kinetics which is responsible for the spontaneous ignition of fuel-air mixture. A set of rigorously defined operations are used to couple the evolution of the G scalar field and the Livengood-Wu integral. The diffusion-controlled combustion is simulated equivalent to applying the Burke-Schumann limit. The combined model is tested in the simulation of the premixed SI combustion in a constant volume chamber, as well as the CI combustion in a conventional small bore diesel engine.
Technical Paper

An Investigation of Different Combustion Chamber Configuration, Intake Temperature, and Coolant Temperature in a HCCI Optical Engine

2011-08-30
2011-01-1765
The influence of different combustion chamber configuration, intake temperature, and coolant temperature on HCCI combustion processes were investigated in a single-cylinder optical engine. Two-dimensional images of the chemiluminescence were captured using an intensified CCD camera in order to understand the spatial distribution of the combustion. N-heptane was used as the test fuel. Three combustion chamber geometries with different squish lip, salient, orthogonal, reentrant shape, referred as V-type, H-type, and A-type respectively, were used in this study. Intake temperature was set to 65°C and 95°C, while coolant temperature was set to 85°C. The experimental data consisting of the in-cylinder pressure, heat release rate, chemiluminescence images all indicated that the different combustion chamber geometries result in different turbulence intensity in the combustion chamber, and thus affect the auto-ignition timing, chemiluminescence intensity, and combustion processes.
Technical Paper

An Investigation of Multiple Scattering in a Hollow-Cone Spray

2007-04-16
2007-01-0648
Laser diagnostics of fuel sprays are often hampered by multiple scattering effects. Planar laser-induced exciplex fluorescence (PLIEF) and Mie scattering images of a spray are presented, and the effects of multiple signal scattering are explored. A hollow-cone spray is cut in half with a spray cutter, and then imaged from either side. In one set, signal passes through the spray to the camera (back-cut images), and in the other set it does not (front-cut images), showing the effect of passing the signal through the spray to the camera. The cut spray is characterized with a phase Doppler anemometer (PDA) and Sauter Mean Diameter (SMD) is seen to range from 10-30 μm. Operational guidelines for using the cutter are presented. It was determined that a film forms on the cutter face 3-5 ms after the start of injection (ASOI) depending on the cutter temperature. Stripped droplets from this film increase droplet concentration and SMD in the center of the spray if the cutter is used improperly.
Technical Paper

Analytical Descriptions of Service Loading Suitable for Fatigue Analysis

1997-04-08
971535
Service loading histories have the same general character for an individual route and the magnitudes vary from driver to driver. Both the magnitude and character of the loading history change from route to route and a linear scaling of one loading history does not characterize the variability of usage over a wide range of operating conditions. In this paper a technique for measuring and extrapolating cumulative exceedance diagrams to quantify the distribution of service loading in a vehicle is described. Monte Carlo simulations are coupled with the local stress strain approach for fatigue to obtain distributions of service loading. Fatigue life estimates based on the original loading histories are compared to those obtained from statistical descriptions of exceedance diagrams.
Technical Paper

Application of Intermediate Vapor Bypass to Mobile Heat Pump System: Extending Operating Range to Lower Ambient Temperature with Low Pressure Low GWP Fluid

2018-04-03
2018-01-0071
With market share of electric vehicles continue to grow, there is an increasing demand of mobile heat pump for cabin climate control, as it has much higher energy efficiency when compared to electric heating and helps to cut drive range reduction. One big challenge of heat pump systems is that their heating capacities drop significantly when operating at very low ambient temperature, especially for those with low pressure refrigerants. This paper presents a way to improve low ambient temperature heating performance by using intermediate vapor bypass with the outdoor heat exchanger, which works as an evaporator in heat pump mode. The experimental results show a 35% increase of heating capacity at −20 °C ambient with the improved system as compared to the baseline, and heating performance factor also slightly increased when the system is working at higher ambient temperature to reach the same heating capacity as the baseline.
Technical Paper

Atomization Characteristics of Multi-component Bio-fuel Systems under Micro-explosion Conditions

2008-04-14
2008-01-0937
A numerical study of micro-explosion in multi-component droplets is presented. The homogeneous nucleation theory is used in describing the bubble generation process. A modified Rayleigh equation is then used to calculate the bubble growth rate. The breakup criterion is then determined by applying a linear stability analysis on the bubble-droplet system. After the explosion/breakup, the atomization characteristics, including Sauter mean radius and averaged velocity of the secondary droplets, are calculated from conservation equations. Micro-explosion can be enhanced by introducing biodiesel into the fuel blends of ethanol and tetradecane. Micro-explosion is more likely to occur at high ambient pressure. However, increasing the ambient temperature does not have a significant effect on micro-explosion. There exists an optimal composition in the liquid mixture for micro-explosion.
Technical Paper

Biomechanical Realism Versus Algorithmic Efficiency: A Trade-off in Human Motion Simulation Modeling

2001-06-26
2001-01-2090
The purpose this paper is to delineate why there exists a trade-off between biomechanical realism and algorithmic efficiency for human motion simulation models, and to illustrate how empirical human movement data and findings can be integrated with novel modeling techniques to overcome such a realism-efficiency tradeoff. We first review three major classes of biomechanical models for human motion simulation. The review of these models is woven together by a common fundamental problem of redundancy—kinematic and/or muscle redundancy. We describe how this problem is resolved in each class of models, and unveil how the trade-off arises, that is, how the computational demand associated with solving the problem is amplified as a model evolves from small scale to large scale, or from less realism to more realism.
Technical Paper

Cavitating Flow within an Injector-Like Geometry and the Subsequent Spray

2019-04-02
2019-01-0284
Cavitation plays a significant role in the spray characteristics and the subsequent mixing and combustion process in engines. Cavitation has beneficial effects on the development of the fuel sprays by improving injection velocity and promoting primary break-up. On the other hand, intense pressure peaks induced by the vapor collapse may lead to erosion damage and severe degradation of the injector performance. In the present paper, the transient cavitating flow in the injector-like geometry was investigated using the modified turbulence model and cavitation criterion. A local density correction was used in the Reynolds-averaged Navier-Stokes turbulence model to reduce the turbulent viscosity, which facilitates the cavitation development. The turbulent stress was also considered in the cavitation inception stage. The modified model is capable of reproducing the cavitating flow with an affordable computational cost.
Technical Paper

Combustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a Spark Ignition Engine

1993-03-01
930217
Cylinder head combustion chamber and piston temperatures and heat fluxes were measured in a 2.2 L 4 cylinder spark ignition engine. Measurements for the combustion chamber were made at wide open throttle conditions, 1400 rpm to 5000 rpm at 600 rpm increments, additional measurements were made on the combustion chamber at part throttle conditions at 3200 RPM. Piston temperature and heat flux measurements were made at WOT conditions from 1400 to 3200 RPM in 600 RPM increments. Average combustion chamber surface temperatures ranged from 130 deg. C to 248 deg. C, while peak combustion chamber surface temperatures ranged from 142 deg. C to 258 deg. C for WOT conditions. Peak heat flus at the surface for WOT conditions in the combustion chamber ranged from 1.2 MW/m2to 5.0 MW/m2. Central region heat fluxes were 2.3 to 2.8 times greater than those in the end gas regions of the combustion chamber.
Technical Paper

Comparing the Operation of a High Speed Direction Injection Engine Using MVCO Injector and Conventional Fuel Injector

2009-04-20
2009-01-0718
The operation of a small bore high speed direct injection (HSDI) engine with a MVCO injector is simulated by the KIVA 3V code, developed by Los Alamos National Laboratory. The MVCO injector extends the range of injection timings over conventional injectors and it extra flexibility in designing injection schemes. Combustion from very early injection is observed with MVCO injections but not with conventional injection. This improves the fuel economy of the engine in terms of lower ISFC. Even better efficiency can be achieved by using biodiesel, which may be due to extra oxygen in the fuel improving the combustion process. Biodiesel sees a longer ignition delay for the initial injection. It also exhibits a faster burning rate and shorter combustion duration. Biodiesel also lowered both NOx and soot emissions. This is consistent with the general observation for soot emissions.
Technical Paper

Comparisons of Computed and Measured Results for a HSDI Diesel Engine Operating Under HCCI Mode

2006-04-03
2006-01-1519
As engine researchers are facing the task of designing more powerful, more fuel efficient and less polluting engines, a large amount of research has been focused towards homogeneous charge compression ignition (HCCI) operation for diesel engines. Ignition timing of HCCI operation is controlled by a number of factors including intake temperatures, exhaust gas recirculation (EGR) and injection timing to name a few. This study focuses on the computational modeling of an optically accessible high-speed direct-injection (HSDI) small bore diesel engine. In order to capture the phenomena of HCCI operation, the KIVA computational code package has been outfitted with an improved and optimized Shell autoignition model, the extended Zeldovich thermal NOx model, and soot formation and oxidation models. With the above named models in place, several cases were computed and compared to experimentally measured data and captured images of the DIATA test engine.
Technical Paper

Continuous Multicomponent Fuel Film Vaporization Model for Multidimensional Engine Modeling

2005-04-11
2005-01-0209
A multicomponent fuel film vaporization model using continuous thermodynamics is developed for multidimensional spray and wall film modeling. The vaporization rate is evaluated using the turbulent boundary-layer assumption and a quasi-steady approximation. Third-order polynomials are used to model the fuel composition profiles and the temperature within the liquid phase in order to predict accurate surface properties that are important for evaluating the mass and moment vaporization rates and heat flux. By this approach, the governing equations for the film are reduced to a set of ordinary differential equations and thus offer a significant reduction in computational cost while maintaining adequate accuracy compared to solving the governing equations for the film directly.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Technical Paper

Development and Validation of a Model for Predicting Hand Prehensile Movements

2006-07-04
2006-01-2329
A prediction model for hand prehensile movements was developed and validated. The model is based on a new approach that blends forward dynamics and a simple parametric control scheme. In the development phase, model parameters were first estimated using a set of hand grasping movement data, and then statistically analyzed. In the validation phase, the model was applied to novel conditions created by varying the subject group and size of the object grasped. The model performance was evaluated by the prediction errors under various novel conditions as compared to the benchmark values with no extrapolation. Analyses of the model parameters led to insights into human movement production and control. The resulting model also offers computational simplicity and efficiency, a much desired attribute for digital applications.
Technical Paper

Dynamic Model of a Springless Electrohydraulic Valvetrain

1997-02-24
970248
A dynamic model for the springless electrohydraulic valvetrain has been developed. The model speeds up the valvetrain development process by simulating effects of parameter changes, thus minimizing the number of hardware variations. It includes dynamic characteristics of check valves that enable energy recovery, hydraulic snubbers that limit seating velocity of the engine valves, and leakage in the control solenoids. A good match of the experimental data has been obtained for a single valve system, and the model calibration and validation have been completed. The known parameters are used together with some unknown calibration constants which have been tuned to match the experimental data. The simulation results for a twin valve system are also presented. The model applications for system performance analysis and for the closed-loop control of the engine valve lift are described. The cyclic variability of the experimental data is also discussed.
Technical Paper

Effects of Oxygenated Compounds on Combustion and Soot Evolution in a DI Diesel Engine:Broadband Natural Luminosity Imaging

2002-05-06
2002-01-1631
The detailed mechanisms by which oxygenated diesel fuels reduce engine-out soot emissions are not well understood. The literature contains conflicting results as to whether a fuel's overall oxygen content is the only important parameter in determining its soot-reduction potential, or if oxygenate molecular structure or other variables also play significant roles. To begin to resolve this controversy, experiments were conducted at a 1200-rpm, moderate-load operating condition using a modern-technology, 4-stroke, heavy-duty DI diesel engine with optical access. Images of broadband natural luminosity (i.e., light emission without spectral filtering) from the combustion chamber, coupled with heat-release and efficiency analyses, are presented for three test-fuels. One test-fuel (denoted GE80) was oxygenated with tri-propylene glycol methyl ether; the second (denoted BM88) was oxygenated with di-butyl maleate. The overall oxygen contents of these two fuels were matched at 26% by weight.
Technical Paper

Examining the Trade-Off Between Automobile Acceleration Performance and Fuel Economy

1996-02-01
960004
A method for making value tradeoff decisions between fuel economy and acceleration performance is demonstrated. Attribute value as defined by the S-Model Theory of Quality [1,2] is measured for the attributes of fuel economy and acceleration performance through a vehicle driving clinic. Willingness-to-pay values are found for the attributes at several different levels. The willingness-to-pay values are then used to refine the empirical and economic value curves previously determined for those attributes.
Technical Paper

Experimental Investigation of Tripod Constant Velocity (CV) Joint Friction

2006-04-03
2006-01-0582
Constant Velocity (CV) joints are an integral part of modern vehicles, significantly affecting steering, suspension, and vehicle vibration comfort levels. Each driveshaft comprises of two types of CV joints, namely fixed and plunging types connected via a shaft. The main friction challenges in such CV joints are concerned with plunging CV joints as their function is to compensate for the length changes due to steering motion, wheel bouncing and engine movement. Although CV joints are common in vehicles, there are aspects of their internal friction and contact dynamics that are not fully understood or modeled. Current research works on modeling CV joint effects on vehicle performance assume constant empirical friction coefficient values. Such models, however are not always accurate, especially under dynamic conditions which is the case for CV tripod joints.
X