Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3-D Numerical Simulation of Transient Heat Transfer among Multi-Component Coupling System in Internal Combustion Chamber

2008-06-23
2008-01-1818
A 3-D numerical analysis model of transient heat transfer among the multi-component coupling system in combustion chamber of internal combustion engine has been developed successfully in the paper. The model includes almost all solid components in combustion chamber, such as piston assembly, cylinder liner, cylinder head gasket, cylinder head, intake valves and exhaust valves, etc. With two different coupling heat transfer modes, one is the lubricant film heat conduction between two moving components, another is the contact heat conduction between two immovable solid components, and with the direct coupled-field analysis method of FEM, the heat transfer relation among the components is established. The simulation result dedicates the transient heat transfer process among the components such as moving piston assembly and cylinder liner, moving valves and cylinder head. The effect of cylinder head gasket on heat transfer among the components is also studied.
Technical Paper

A Method of Battery State of Health Prediction based on AR-Particle Filter

2016-04-05
2016-01-1212
Lithium-ion battery plays a key role in electric vehicles, which is critical to the system availability. One of the most important aspects in battery managements systems(BMS) in electric vehicles is the stage of health(SOH) estimation. The state of health (SOH) estimation is very critical to battery management system to ensure the safety and reliability of EV battery operation. The classical approach of current integration(coulomb counting) can't get the accurate values because of accumulative error. In order to provide timely maintenance and replacements of electric vehicles, several estimation approaches have been proposed to develop a reliable and accurate battery state of health estimation. A common drawback of previous algorithm is that the computation quantity is huge and not quite accurate, that is updated partially in this study.
Technical Paper

A Modeling Study of the Effects of Butanol Addition on Aromatic Species in Premixed Butane Flames

2016-04-05
2016-01-0574
The motivation of the present work was to understand the mechanism by which alcohols produce less aromatic species in their combustion process than an equal amount of hydrocarbon with similar molecular structure does. Due to its numerous advantages over short-chain alcohols, butanol has been considered very promising in soot reduction. Excluding the influence of spray, vaporization and mixing process in engine cases, an adiabatic constant-pressure reactor model was applied to investigate the effect of butanol additives on aromatic species, which are known to be soot precursors, in fuel-rich butane flames. To keep the carbon flux constant, 5% and 10% oxygen by mass of the fuel were added to butane using butanol additive, respectively. Based on the soot reduction effects proposed in literature, effects on temperature, key radical concentrations and the carbon removal from the pathway to aromatic species were considered to identify the major mechanism of reduction in aromatic species.
Technical Paper

A Numerical Study on the Effects of Hot EGR on the Operation of Natural Gas Engine Ignited by Diesel-Butanol Blends

2017-03-28
2017-01-0760
Butanol, which is a renewable biofuel, has been regarded as a promising alternative fuel for internal combustion engines. When blended with diesel and applied to pilot ignited natural gas engines, butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency. However, high blend ratio of butanol is limited by its longer ignition delay caused by the higher latent heat and higher octane number, which restricts the improvement of emission characteristics. In this paper, the potential of increasing butanol blend ratio by adding hot exhaust gas recirculation (EGR) is investigated. 3D CFD model based on a detailed kinetic mechanism was built and validated by experimental results of natural gas engine ignited by diesel/butanol blends. The effects of hot EGR is then revealed by the simulation results of the combustion process, heat release traces and also the emissions under different diesel/butanol blend ratios.
Technical Paper

A Reduced Chemical Kinetic Mechanism of Toluene Reference Fuel (toluene/n-heptane) for Diesel Engine Combustion Simulations

2015-04-14
2015-01-0387
In the present study, we developed a reduced chemical reaction mechanism consisted of n-heptane and toluene as surrogate fuel species for diesel engine combustion simulation. The LLNL detailed chemical kinetic mechanism for n-heptane was chosen as the base mechanism. A multi-technique reduction methodology was applied, which included directed relation graph with error propagation and sensitivity analysis (DRGEPSA), non-essential reaction elimination, reaction pathway analysis, sensitivity analysis, and reaction rate adjustment. In a similar fashion, a reduced toluene mechanism was also developed. The reduced n-heptane and toluene mechanisms were then combined to form a diesel surrogate mechanism, which consisted of 158 species and 468 reactions. Extensive validations were conducted for the present mechanism with experimental ignition delay in shock tubes and laminar flame speeds under various pressures, temperatures and equivalence ratios related to engine conditions.
Technical Paper

A Semantic Segmentation Algorithm for Intelligent Sweeper Vehicle Garbage Recognition Based on Improved U-net

2023-04-11
2023-01-0745
Intelligent sweeper vehicle is gradually applied to human life, in which the accuracy of garbage identification and classification can improve cleaning efficiency and save labor cost. Although Deep Learning has made significant progress in computer vision and the application of semantic network segmentation can improve waste identification rate and classification accuracy. Due to the loss of some spatial information during the convolution process, coupled with the lack of specific datasets for garbage identification, the training of the network and the improvement of recognition and classification accuracy are affected. Based on the Unet algorithm, in this paper we adjust the number of input and output channels in the convolutional layer to improve the speed during the feature extraction part. In addition, manually generated datasets are used to greatly improve the robustness of the model.
Journal Article

A Visible and Infrared Fusion Based Visual Odometry for Autonomous Vehicles

2020-04-14
2020-01-0099
An accurate and timely positioning of the vehicle is required at all times for autonomous driving. The global navigation satellite system (GNSS), even when integrated with costly inertial measurement units (IMUs), would often fail to provide high-accuracy positioning due to GNSS-challenged environments such as urban canyons. As a result, visual odometry is proposed as an effective complimentary approach. Although it’s widely recognized that visual odometry should be developed based on both visible and infrared images to address issues such as frequent changes in ambient lightening conditions, the mechanism of visible-infrared fusion is often poorly designed. This study proposes a Generative Adversarial Network (GAN) based model comprises a generator, which aims to produce a fused image combining infrared intensities and visible gradients, and a discriminator whose target is to force the fused image to retain as many details that exist mostly in visible images as possible.
Technical Paper

Adaptive Model Predictive Control for Articulated Steering Vehicles

2024-04-12
2024-01-5042
Vehicles equipped with articulated steering systems have advantages such as low energy consumption, simple structure, and excellent maneuverability. However, due to the specific characteristics of the system, these vehicles often face challenges in terms of lateral stability. Addressing this issue, this paper leverages the precise and independently controllable wheel torques of a hub motor-driven vehicle. First, an equivalent double-slider model is selected as the dynamic control model, and the control object is rationalized. Subsequently, based on the model predictive control method and considering control accuracy and robustness, a weight-variable adaptive model predictive control approach is proposed. This method addresses the optimization challenges of multiple systems, constraints, and objectives, achieving adaptive control of stability, maneuverability, tire slip ratio, and articulation angle along with individual wheel torques during the entire steering process of the vehicle.
Technical Paper

Analysis and Evaluation of the Urban Bus Driving Cycle on Fuel Economy

2007-07-23
2007-01-2073
On-road testing of driving performance of the urban bus was carried out, and a representative urban bus driving cycle was developed after on-road testing, according to the test results. Then, the vehicle simulation software AVL CRUISE was used to simulate the dynamic behavior of the urban bus. It involves the simulation of complete drive train system and the driver behavior. The model is validated by comparing the results of the simulation to the results of the field test. Then the developed driving cycle is evaluated by fuel consumption resulted from the simulation and engine bench test on fuel economy.
Technical Paper

Analysis and Modeling of Transmission Efficiency of Vehicle Driveline

2014-04-01
2014-01-1779
This work analyzes the transmission efficiency of vehicle driveline including the gearbox, universal transmission and differential. Based on the structure of transmission, mathematic models are built to analyze transmission's characteristics. However, an experiment reveals the limitation of this method. Then, the paper statistically analyzes the experimental data and mainly analyzes the influencing factors. Then Neural Network is used to build the efficiency model. A method called “filling data and gradually extrapolating” is used when building neural network model. Finally, the neural network model is used in the simulation of fuel consumption. The conclusion is Neural Network model can imitate the transmission efficiency of vehicle driveline efficiently, but its internal structure is not clear so other modeling methods are needed to be found.
Technical Paper

Analysis of the Thermal Deformation in an Automotive Exhaust-Based Thermoelectric Generator

2015-04-14
2015-01-0348
The potential for automotive exhaust-based thermoelectric generator (TEG) has been increasing with continuously advances in thermoelectric technology. In this paper, the thermal deformation of the TEG system is studied on the basis of the surface temperature distribution of the heat exchanger. The simulation result shows that thermoelectric modules (TMs) on different positions have different thermal performance which can significantly influence the power generation efficiency of the system. Meanwhile, in terms of the working performance of TMs, the clamping mechanism is considered to have some effects on both the cold side and the hot side of TEG. Following the simulation, bench tests are carried out to confirm the reasonability of the simulation results.
Technical Paper

Analytical Modeling and Multi-Objective Optimization of the Articulated Vehicle Steering System

2022-03-29
2022-01-0879
The articulated steering system is widely used in engineering vehicles due to its high mobility and low steering radius. The design parameters have a vital impact on the selection of the steering system assemblies, such as the operation stroke, pressure, and force of the hydraulic cylinders during the steering process, which will affect the system weight. The system energy consumption is also relevant to the geometry parameters. According to the kinetic analysis of the steering system and dynamic analysis of the steering process, the kinetic model of an engineering vehicle steering system is built, and the length and pressure variation of the cylinder is calculated and validated by the field test. The influence of the factors is analyzed based on the established model. To lower the system weight, needed pressure, and force, the multi-objective particle swarm optimization method is initiated to optimize the geometry parameter of the articulated steering system.
Technical Paper

Anti-Skid System for Ice-Snow Curve Road Surface Based on Visual Recognition and Vehicle Dynamics

2023-04-11
2023-01-0058
Preventing skidding is essential for studying the safety of driving in curves. However, the adhesion of the vehicle during the driving process on the wet and slippery road will be significantly reduced, resulting in lateral slippage due to the low adhesion coefficient of the road surface, the speed exceeding the turning critical, and the turning radius being too small when passing through the corner. Therefore, to reduce the incidence of traffic accidents of passenger cars driving in curves on rainy and snowy days and achieve the purpose of planning safe driving speed, this paper proposes a curve active safety system based on a deep learning algorithm and vehicle dynamics model. First,we a convolutional neural network (CNN) model is constructed to extract and judge the characteristics of snow and ice adhesion on roads.
Technical Paper

Assisted Steering Control for Distributed Drive Electric Vehicles Based on Combination of Driving and Braking

2023-10-30
2023-01-7012
This paper presents a low-speed assisted steering control approach for distributed drive electric vehicles. When the vehicle is driven at low speed, the braking of the inner-rear wheel is combined with differential drive to reduce the turning radius. A hierarchical control structure has been designed to achieve comprehensive control. The upper-level controller tracks the expected yaw rate and vehicle side-slip angle through a Linear Quadratic Regulator (LQR) algorithm. The desired yaw rate and vehicle side-slip angle are obtained according to the reference vehicle model, which can be regulated by the driver through the accelerator pedal. The lower-level controller uses a quadratic programming algorithm to distribute the yaw moment and driving moment to each wheel, aiming to minimize tire load rate variance.
Technical Paper

Automatic Optimization Method for FSAE Racing Car Aerodynamic Kit Based on the Integration of CAD and CAE

2024-04-09
2024-01-2079
In the process of designing the aerodynamic kit for Formula SAE racing cars, there is a lot of repetitive work and low efficiency in optimizing parameters such as wing angle of attack and chord length. Moreover, the optimization of these parameters in past designs heavily relied on design experience and it's difficult to achieve the optimal solution through theoretical calculations. By establishing a parametric model in CAD software and integrating it with CFD software, we can automatically modify model parameters, run a large number of simulations, and analyze the simulation results using statistical methods. After multiple iterations, we achieve fully automatic parameter optimization and obtain higher negative lift. At the same time, the simulation process is optimized, and simulations are run based on GPUs, resulting in a significant increase in simulation speed compared to the original.
Technical Paper

Automatic Parking Control Algorithms and Simulation Research Based on Fuzzy Controller

2020-04-14
2020-01-0135
With the increase of car ownership and the complex and crowded parking environment, it is difficult for drivers to complete the parking operation quickly and accurately, which may cause traffic accidents such as vehicle collisions and road jams because of poor parking skills. The emergence of an automatic parking system can help drivers park safely and reduce the occurrence of safety accidents. In this paper, the neural network identifier on the control method of an adaptive integral derivative of a neural network is proposed for an automatic parallel parking system with front-wheel steering is studied by using MATLAB/Simulink environment, and the simulation is carried out. Firstly, according to vehicle parameters and obstacle avoidance constraints, the minimum parking space, and parking starting position are calculated. Meanwhile, the path planning of parallel parking spaces is carried out by quintic polynomial.
Technical Paper

Autopilot Strategy Based on Improved DDPG Algorithm

2019-11-04
2019-01-5072
Deep Deterministic Policy Gradient (DDPG) is one of the Deep Reinforcement Learning algorithms. Because of the well perform in continuous motion control, DDPG algorithm is applied in the field of self-driving. Regarding the problems of the instability of DDPG algorithm during training and low training efficiency and slow convergence rate. An improved DDPG algorithm based on segmented experience replay is presented. On the basis of the DDPG algorithm, the segmented experience replay select the training experience by the importance according to the training progress to improve the training efficiency and stability of the training model. The algorithm was tested in an open source 3D car racing simulator called TORCS. The simulation results demonstrate the training stability is significantly improved compared with the DDPG algorithm and the DQN algorithm, and the average return is about 46% higher than the DDPG algorithm and about 55% higher than the DQN algorithm.
Technical Paper

Bi-Directional Evolutionary Structural Optimization for Crashworthiness Structures

2020-04-14
2020-01-0630
Gradient based topology optimization method is difficult used to optimization of crashworthiness structures due to the expensive computational cost of sensitivity analysis and complex nonlinear behaviors (geometric nonlinearity, material nonlinearity and contact nonlinearity) of structures during a collision. Equivalent static loads (ESLs) method is one of the methods for nonlinear dynamic response optimization. However, this method ignores the material nonlinearity. Thus this paper proposes an improved topology optimization method for crashworthiness structure based on a modified ESLs method. A new calculation of ESLs considering material nonlinearity is proposed. The improved ESLs method is employed to transform the nonlinear dynamic response optimization into a nonlinear static response optimization with multiple load cases. Each element in the design domain is assigned with a design variable.
Technical Paper

Big-Data Based Online State of Charge Estimation and Energy Consumption Prediction for Electric Vehicles

2016-04-05
2016-01-1200
Whether the available energy of the on-board battery pack is enough for the driver’s next trip is a major contributor in slowing the growth rate of Electric Vehicles (EVs). What’s more, the actual capacity of the battery pack depend on so many factors that a real-time estimation of the state of charge of the battery pack is often difficult. We proposed a big-data based algorithm to build a battery pack dynamic model for the online state of charge estimation and a stochastic model for the energy consumption prediction. And the good performance of sensors, high-bandwidth communication systems and cloud servers make it convenient to measure and collect the related data, which are grouped into three categories: standard, historical and real-time data. First a resistance-capacitance ( RC )-equivalent circuit is taken consideration to simplify the battery dynamics.
Journal Article

Boiling Coolant Vapor Fraction Analysis for Cooling the Hydraulic Retarder

2015-04-14
2015-01-1611
The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
X