Refine Your Search

Topic

Search Results

Journal Article

A Combined Experimental and Numerical Analysis on the Aerodynamics of a Carbon-Ceramic Brake Disc

2024-01-04
Abstract Composite ceramic brake discs are made of ceramic material reinforced with carbon fibers and offer exceptional advantages that translate directly into higher vehicle performance. In the case of an electric vehicle, it could increase the range of the vehicle, and in the case of conventional internal combustion engine vehicles, it means lower fuel consumption (and consequently lower CO2 emissions). These discs are typically characterized by complex internal geometries, further complicated by the presence of drilling holes on both friction surfaces. To estimate the aerothermal performance of these discs, and for the thermal management of the vehicle, a reliable model for predicting the air flowing across the disc channels is needed. In this study, a real carbon-ceramic brake disc with drilling holes was investigated in a dedicated test rig simulating the wheel corner flow conditions experimentally using the particle image velocimetry technique and numerically.
Journal Article

A Contribution to Improving the Thermal Management of Powertrain Systems

2019-10-08
Abstract This work presents a generalized methodology for the optimal thermal management of different powertrain devices. The methodology is based on the adoption of an electrically driven pump and on the development of a specifically designed controller algorithm. This is achieved following a Model Predictive Control approach and requires a generalized lumped-parameters model of the thermal exchange between the device walls and the coolant. The methodology is validated at a test rig, with reference to a four-cylinder spark-ignition engine. Results show that the proposed approach allows a reduction in fuel consumption of about 2-3% during the engine warm-up, a decrease in fuel consumption of about 1-2% during fully warmed operation, and an estimated fuel consumption reduction of about 2.5-3% in an NEDC. Finally, the investigation highlights that the proposed approach reduces the risk of after-boiling when the engine is rapidly switched off after a prolonged high-load operation.
Journal Article

A Distributed Parameter Approach for the Modeling of Thermoelectric Devices

2018-12-04
Abstract Thermoelectric devices (TEDs) allow direct electric and thermal energy mutual conversion. Because of the absence of working fluids and moving components, they can be used where it is not possible to refer to conventional technologies. In automotive applications, TEDs can give support in air conditioning and internal combustion engine (ICE) thermal heat recovery, contributing to increase the overall vehicle efficiency. Phenomena taking place in these devices are of a different nature and involve electric, thermal, and thermoelectric aspects, being highly influenced by materials’ characteristics and by system geometry. With the aim to offer a design tool, a TED mathematical model is presented in this article. The proposed model is based on a distributed parameter approach and has been conceived to consider heat transfer actual conditions. It accurately describes thermal energy production and removal terms due to Peltier and Joule effects.
Journal Article

A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis

2019-08-22
Abstract Performing an uncertainty analysis for complex measurement tasks, such as those found in engine research, presents unique challenges. Also, because of the excessive computational costs, modeling-based approaches, such as a Monte Carlo approach, may not be practical. This work provides a traditional statistical approach to uncertainty analysis that incorporates the uncertainty tree, which is a graphical tool for complex uncertainty analysis. Approaches to calculate the required sensitivities are discussed, including issues associated with numerical differentiation, numerical integration, and post-processing. Trimming of the uncertainty tree to remove insignificant contributions is discussed. The article concludes with a best practices guide in the Appendix to uncertainty propagation in experimental engine combustion post-processing, which includes suggested post-processing techniques and down-selected functional relationships for uncertainty propagation.
Journal Article

A Method for Improvement in Data Quality of Heat Release Metrics Utilizing Dynamic Calculation of Cylinder Compression Ratio

2019-10-29
Abstract One of the key factors for accurate mass burn fraction and energy conversion point calculations is the accuracy of the compression ratio. The method presented in this article suggests a workflow that can be applied to determine or correct the compression ratio estimated geometrically or measured using liquid displacement. It is derived using the observation that, in a motored engine, the heat losses are symmetrical about a certain crank angle, which allows for the derivation of an expression for the clearance volume [1]. In this article, a workflow is implemented in real time, in a current production engine indicating system. The goal is to improve measurement data quality and stability for the energy conversion points calculated during measurement procedures. Experimental and simulation data is presented to highlight the benefits and improvement that can be achieved, especially at the start of combustion.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Journal Article

A Method for the Estimation of Cooling System and Driving Performance for Fuel Cell Vehicles Based on Customer Fleet Data

2021-10-28
Abstract An efficient vehicle thermal management is essential to fulfil the requirements of fuel consumption and passenger comfort. Therefore, the design and dimensioning of the cooling system is under high scrutiny in new vehicle architectures. With increasing electrification, no longer just the load peaks define the design frame but also the dynamics of thermal loading and recovery. Consequently, electrified vehicle architectures such as plug-in hybrid fuel cell vehicles demand for alternative approaches regarding the design of cooling systems and the definition of the decisive criteria. This article presents a new methodology for designing the cooling system related to its demands in customer operation. The recorded fleet data is first filtered for high load driving, using the so-called thermal load integral (LI) as a filter criterion.
Journal Article

A Model Reference Adaptive Controller for an Electric Motor Thermal Management System in Autonomous Vehicles

2022-02-16
Abstract Technological advancements and growth in electric motors and battery packs enable vehicle propulsion electrifications, which minimize the need for fossil fuel consumption. The mobility shift to electric motors creates a demand for an efficient electric motor thermal management system that can accommodate heat dissipation needs with minimum power requirements and noise generation. This study proposes an intelligent hybrid cooling system that includes a gravity-aided passive cooling solution coupled with a smart supplementary liquid cooling system. The active cooling system contains a radiator, heat sink, variable frequency drive, alternating current (AC) fan, direct current (DC) pump, and real-time controller. A complete nonlinear mathematical model is developed using a lumped parameter approach to estimate the optimum fan and pump operations at each control interval.
Journal Article

A Neural Network-Based Regression Study for a Hybrid Battery Thermal Management System under Fast Charging

2021-11-03
Abstract Fast charging is significant for the driving convenience of an electric vehicle (EV). However, this technology causes lithium (Li)-ion batteries’ massive heat generation under such severe current rates. To ensure the thermal performance and lifespan of a Li-ion battery module under fast charging, an artificial neural network (ANN) regression method is proposed for a hybrid phase change material (PCM)—liquid coolant-based battery thermal management system (BTMS) design. Two ANN regression models are trained based on experimental data considering two targets: maximum temperature (Tmax ) and temperature standard deviation (TSD) of the hybrid cooling-based battery module. The regression accuracy reaches 99.942% and 99.507%, respectively. Four sets of experimental data are employed to validate the reliability of this method, and the cooling effect (Tmax and TSD) of the hybrid BTMS are predicted using the trained ANN regression models.
Journal Article

A Novel Approach towards Stable and Low Emission Stratified Lean Combustion Employing Two Solenoid Multi-Hole Direct Injectors

2018-04-18
Abstract Stratified lean combustion has proven to be a promising approach for further increasing the thermal efficiency of gasoline direct injection engines in low load conditions. In this work, a new injection strategy for stratified operation mode is introduced. A side and a central-mounted solenoid multi-hole injector are simultaneously operated in a single-cylinder engine. Thermodynamic investigations show that this concept leads to improved stability, faster combustion, reduced particle number emissions, and lower fuel consumption levels compared to using only one injector. Experiments at an optical engine and three-dimensional computational fluid dynamics (CFD) simulations explain the improvements by a more compact mixture and reduced piston wetting with two injectors. Finally, the application of external EGR in combination with the above concept allows NOx emissions to be effectively kept at a low level while maintaining a stable operation.
Journal Article

A Numerical Methodology to Test the Lubricant Oil Evaporation and Its Thermal Management-Related Properties Derating in Hydrogen-Fueled Engines

2023-09-15
Abstract Due to the incoming phase out of fossil fuels from the market in order to reduce the carbon footprint of the automotive sector, hydrogen-fueled engines are candidate mid-term solution. Thanks to its properties, hydrogen promotes flames that poorly suffer from the quenching effects toward the engine walls. Thus, emphasis must be posed on the heat-up of the oil layer that wets the cylinder liner in hydrogen-fueled engines. It is known that motor oils are complex mixtures of a number of mainly heavy hydrocarbons (HCs); however, their composition is not known a priori. Simulation tools that can support the early development steps of those engines must be provided with oil composition and properties at operation-like conditions. The authors propose a statistical inference-based optimization approach for identifying oil surrogate multicomponent mixtures. The algorithm is implemented in Python and relies on the Bayesian optimization technique.
Journal Article

A Probabilistic Approach to Hydroplaning Potential and Risk

2019-01-30
Abstract A major contributor to fatal vehicle crashes is hydroplaning, which has traditionally been reported at a specific vehicle speed for a given operating condition. However, hydroplaning is a complex phenomenon requiring a holistic, probabilistic, and multidisciplinary approach. The objective of this article is to develop a probabilistic approach to predict Hydroplaning Potential and Risk that integrates fundamental understanding of the interdependent factors: hydrology, fluid-solid interactions, tire mechanics, and vehicle dynamics. A novel theoretical treatment of Hydroplaning Potential and Risk is developed, and simulation results for the prediction of water film thickness and Hydroplaning Potential are presented. The results show the advantages of the current approach which could enable the improvement of road, vehicle, and tire design, resulting in greater safety of the traveling public.
Journal Article

An Adaptive Neuro-Fuzzy Inference System (ANFIS) Based Model for the Temperature Prediction of Lithium-Ion Power Batteries

2018-08-14
Abstract Li-ion batteries have been widely applied in the areas of personal electronic devices, stationary energy storage system and electric vehicles due to their high energy/power density, low self-discharge rate and long cycle life etc. For the better designs of both the battery cells and their thermal management systems, various numerical approaches have been proposed to investigate the thermal performance of power batteries. Without the requirement of detailed physical and thermal parameters of batteries, this article proposed a data-driven model using the adaptive neuro-fuzzy inference system (ANFIS) to predict the battery temperature with the inputs of ambient temperature, current and state of charge. Thermal response of a Li-ion battery module was experimentally evaluated under various conditions (i.e. ambient temperature of 0, 5, 10, 15 and 20 °C, and current rate of C/2, 1C and 2C) to acquire the necessary data sets for model development and validation.
Journal Article

An Improved Semi-Transient Brake Cooling Simulation Method

2024-02-05
Abstract In this article, an improved brake cooling simulation method is introduced. By this method, the vehicle parameters, such as weight, height of the center of gravity, wheelbase, and the like can be included to calculate the braking thermal load under different operating conditions. The effect of the brake kinetic energy regeneration (BKER) on the braking thermal load can also be calculated by this method. The calculated braking thermal load is then input to a coupled 3D simulation model to conduct flow and thermal simulation to calculate brake disc temperature. It is demonstrated that by this simulation method, the difference between the brake disc temperatures obtained from simulation and vehicle test can be controlled below 5%.
Journal Article

Analysis of the Water Management on a Full Virtual Car Using Computational Fluid Dynamics

2020-03-23
Abstract The appearance of an automobile is anything but unimportant for the owner. This applies to the acquisition as well as the keeping. In this context, the avoidance of corrosion is a fundamental part of the user’s satisfaction of a company. The body design can be modified to optimize drainage and reduce the risk of corrosion, improving the owner’s satisfaction with the purchase of the automobile. During the proof of concept of water management, as part of the process of development, physical prototypes are state of the art. At this point in the development process, every necessary change is expensive and time consuming. Virtual methods are able to support the development in earlier steps and thus reduce costs. The conventional Computational Fluid Dynamics (CFD) methods could not handle the simulation of a full car in the rain or water passage properly due to much higher computation efforts and deviations from the experiments.
Journal Article

Application of a New Method for Comparing the Overall Energy Consumption of Different Automotive Thermal Management Systems

2018-10-03
Abstract This article applies a new method for the evaluation and estimation of real-life energy consumption of two different thermal management systems based on driving behavior in the course of the day. Recent attempts to find energy-efficient thermal management systems for electric and plug-in hybrid electric vehicles have led to using secondary loop systems as an alternative approach for meeting dynamic heating and cooling demands and reducing refrigerant charge. However, the additional layer of thermal resistance, which influences the system’s transient behavior as well as passenger compartment comfort during cool-down or heat-up, makes it difficult to estimate the annual energy consumption. In this article, the overall energy consumption of a conventional and a secondary loop system is compared using a new method for describing actual customers’ driving behavior in the course of the day.
Journal Article

Assessment of Two Thermal Comfort Simulation Strategies for Electric Vehicle

2022-03-04
Abstract Electric Vehicle (EV) motors and batteries do not create heat in the same way as internal combustion engines; therefore, new specific thermal management solutions are required. Thus the development of adequate simulation methodologies to predict the thermal behavior of new devices and their influence on the thermal comfort of the users is a key point of investigation. In this work two different thermal comfort analysis methodologies are presented and compared with climatic chamber tests. The first one is a zero-dimensional (0D) approach, based on the calculation of the different heat fluxe, that predicts the evolution of average temperature in the vehicle cabin and calculates standard comfort index Predicted Mean Vote (PMV). The second one is a Computational Fluid Dynamics (CFD) method coupled with a simplified human comfort model, also called the manikin model; it calculates a detailed thermal analysis of the cabin and gives a comfort index for some body segments.
Journal Article

Case Study of Water Condensation and Evaporation Effects on Tailpipe Continuous Mass Emission Calculations in a Gasoline Powertrain

2022-10-11
Abstract Emissions development work for gasoline aftertreatment systems is often conducted in a laboratory on a chassis dynamometer. In this situation, extractive sample lines are frequently connected to the aftertreatment system before and after various components, such as a three-way catalyst, selective catalytic reduction substrate, and the like. This is done to measure the conversion efficiency of the aftertreatment system components as a function of time. The time series exhaust component concentration data, also referred to as continuous data, are combined with a measure of exhaust volumetric flowrate and used to calculate mass-based emissions. As gasoline powertrains become cleaner and produce lower levels of criteria emissions, the proximity (i.e., colocated or not colocated) of the volumetric flowrate and concentration measurements may affect the accuracy of the overall mass emission calculation.
Journal Article

Comparative Study of Different Air Supply Systems for Automotive Fuel Cell Applications

2019-05-10
Abstract The dynamic and efficiency of automotive fuel cell drives is significantly influenced by air supply system. Different air compression architectures use electric compressor (EC), electric turbocharger (ETC), or a serial booster (SB) consisting of turbocharger and electric compressor. These three variants of air compression systems were modeled using a map approach and added to a 0D fuel cell air supply model. The characteristic maps of the turbomachinery were measured on the test bench under fuel cell conditions. Subsequently, the calculated isentropic efficiencies were corrected with respect to heat transfer phenomena occurring during the measurement. Moreover, a scaling method for the maps of the turbomachinery is explained. The initial simulation of the air compression systems with equal diameters for the turbomachinery showed no difference in the mechanical power demand.
Journal Article

Complete Engine Thermal Model, a Comprehensive Approach

2018-04-18
Abstract Upcoming engine generations are characterized by both a general trend of increased specific-power and higher efficiency. This leads to increased thermal loads, compromising reliability, and simultaneously to a limited amount of heat under ordinary engine use. Heat is a valuable resource in providing passenger comfort and emission control. For these reasons the subject of engine thermal management is receiving increasing attention. This work presents a comprehensive study of the complete engine thermal behavior at relevant running conditions: rated-power, peak-torque and ordinary use. The work is further extended to the engine warm-up period. The result is a high-resolution complete engine thermal model, capable of simultaneously reporting the local temperature of any engine part, and the global engine heat balance at any engine load.
X