Refine Your Search

Topic

Search Results

Journal Article

100 Years of Corrosion Testing—Is It Time to Move beyond the ASTM D130? The Wire Corrosion and Conductive Deposit Tests

2023-09-22
Abstract The ASTM D130 was first issued in 1922 as a tentative standard for the detection of corrosive sulfur in gasoline. A clean copper strip was immersed in a sample of gasoline for three hours at 50°C with any corrosion or discoloration taken to indicate the presence of corrosive sulfur. Since that time, the method has undergone many revisions and has been applied to many petroleum products. Today, the ASTM D130 standard is the leading method used to determine the corrosiveness of various fuels, lubricants, and other hydrocarbon-based solutions to copper. The end-of-test strips are ranked using the ASTM Copper Strip Corrosion Standard Adjunct, a colored reproduction of copper strips characteristic of various degrees of sulfur-induced tarnish and corrosion, first introduced in 1954. This pragmatic approach to assessing potential corrosion concerns with copper hardware has served various industries well for a century.
Journal Article

A Comparative Analysis of Metaheuristic Approaches (Genetic Algorithm/Hybridization of Genetic Algorithms and Simulated Annealing) for Planning and Scheduling Problem with Energy Aspect

2021-05-20
Abstract This article discusses a multi-item planning and scheduling problem in a job-shop system with consideration of energy consumption. Planning is considered by a set of periods, each one is characterized by a demand, energy, and length. Scheduling is determined by the sequences of jobs on available resources. A Mixed-Integer Linear Programming (MILP) problem is formulated to integrate planning and scheduling, it is considered as an NP-difficult problem. A Genetic Algorithm (GA) is then developed to solve the MILP, and then a hybridized approach of simulated annealing with genetic algorithm (HGASA) is presented to optimize the results. Finally, numerical results are presented and analyzed to evaluate the effectiveness of the proposed algorithms.
Journal Article

A Method for Improvement in Data Quality of Heat Release Metrics Utilizing Dynamic Calculation of Cylinder Compression Ratio

2019-10-29
Abstract One of the key factors for accurate mass burn fraction and energy conversion point calculations is the accuracy of the compression ratio. The method presented in this article suggests a workflow that can be applied to determine or correct the compression ratio estimated geometrically or measured using liquid displacement. It is derived using the observation that, in a motored engine, the heat losses are symmetrical about a certain crank angle, which allows for the derivation of an expression for the clearance volume [1]. In this article, a workflow is implemented in real time, in a current production engine indicating system. The goal is to improve measurement data quality and stability for the energy conversion points calculated during measurement procedures. Experimental and simulation data is presented to highlight the benefits and improvement that can be achieved, especially at the start of combustion.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Journal Article

A Numerical Methodology to Test the Lubricant Oil Evaporation and Its Thermal Management-Related Properties Derating in Hydrogen-Fueled Engines

2023-09-15
Abstract Due to the incoming phase out of fossil fuels from the market in order to reduce the carbon footprint of the automotive sector, hydrogen-fueled engines are candidate mid-term solution. Thanks to its properties, hydrogen promotes flames that poorly suffer from the quenching effects toward the engine walls. Thus, emphasis must be posed on the heat-up of the oil layer that wets the cylinder liner in hydrogen-fueled engines. It is known that motor oils are complex mixtures of a number of mainly heavy hydrocarbons (HCs); however, their composition is not known a priori. Simulation tools that can support the early development steps of those engines must be provided with oil composition and properties at operation-like conditions. The authors propose a statistical inference-based optimization approach for identifying oil surrogate multicomponent mixtures. The algorithm is implemented in Python and relies on the Bayesian optimization technique.
Journal Article

A Synthetic Ash-Loading Method for Gasoline Particulate Filters with Active Oil Injection

2021-03-22
Abstract To reduce particulate emissions, the use of particulate filters in diesel engines is meanwhile state of the art, while the integration of such systems in gasoline engines is now also necessary in order to comply with today’s regulations. Over its lifetime, a gasoline particulate filter (GPF) collects ash components of fuel, lubrication oil, and materials originating from the catalytic coating and from engine abrasion. In the development and application process, synthetic ashing from GPFs is challenging. The ash of the lubrication oil can be increased in various ways, like oil-doped fuel, a separate oil burner, or changes in the piston-cylinder system of the engine. However, these methods show major disadvantages.
Journal Article

Acid Neutralization Rates—Why Total Base Number Doesn’t Tell the Whole Story: Understanding the Neutralization of Organic Acid in Engine Oils

2021-09-15
Abstract The acidification of lubricating oils during engine operation, and the subsequent additive neutralization, is an important challenge for Original Equipment Manufacturers and end-users. Often the decline in Total Base Number (TBN) and increase in Total Acid Number (TAN) is measured during engine operation as an indication of the oil’s condition and lifetime. This is clearly an oversimplification given that no consideration is given to the type of acid, how corrosive it is, or the type of base and how effective it is at neutralizing. Acids can be broadly categorized into mineral acids such as sulfuric/nitric and organic acids such as acetic. Traditionally, research has focused on understanding the effects of mineral acids such as sulfuric, which can be formed during the combustion of sulfur-containing fuel.
Journal Article

Acid Neutralization Rates—Why Total Base Number Doesn’t Tell the Whole Story: Understanding How the Colloidal Structure of Overbased Detergents Influences Acid Neutralization Rates

2021-03-30
Abstract Neutralization of acidic contaminants in engine lubricating oil is an important topic for engine manufacturers. Often, the deterioration in total base number (TBN) and increase in total acid number (TAN) during engine test operation is used as an indication of oil lifetime. This is clearly an oversimplification given that no consideration is given to how corrosive the acid is, and how effective the base is at neutralizing different acids. The work detailed here will explore how the presence of inorganic acids can be combated by lubricant additives, such as overbased detergents, through rapid neutralization. To achieve this, stopped-flow UV/visible spectroscopy has been used to measure the reaction kinetics between an overbased detergent and sulfuric acid containing water-in-oil (w/o) microemulsion droplets. The key structural properties of overbased detergents that contribute to effective acid neutralization will be explored.
Journal Article

An Experimental Study on Frictional Losses of Coated Piston Rings with Symmetric and Asymmetric Geometry

2021-05-25
Abstract An increase in the efficiency of internal combustion engines is a key challenge for engineers today. Mechanical losses contribute significantly to engine inefficiency, and the piston assembly has the largest share in these losses. Various measures are therefore taken to reduce friction between the piston and the rings against the cylinder. However, the undertaken changes most frequently generate new challenges. For instance, lowering the viscosity of the engine oil or increasing the engine load may lead to accelerated wear of the mating surfaces. In order to resolve this problem, more and more complex materials and anti-wear coatings have to be used. Furthermore, under these conditions, the shape of the ring’s sliding surface becomes more important. This article presents the results of experimental research on the influence of the geometry of the sliding surface and the use of various anti-wear coatings.
Journal Article

An Investigation of the Effects of the Piston Bowl Geometries of a Heavy-Duty Engine on Performance and Emissions Using Direct Dual Fuel Stratification Strategy, and Proposing Two New Piston Profiles

2020-03-16
Abstract Direct dual fuel stratification (DDFS) strategy benefits the advantages of the RCCI and PPC strategies simultaneously. DDFS has improved control over the heat release rate, by injecting a considerable amount of fuel near TDC, compared to RCCI. In addition, the third injection (near TDC) is diffusion-limited. Consequently, piston bowl geometry directly affects the formation of emissions. The modified piston geometry was developed and optimized for RCCI by previous scholars. Since all DDFS experimental tests were performed with the modified piston profile, the other piston profiles need to be investigated for this strategy. In this article, first, a comparative study between the three conventional piston profiles, including the modified, stock, and scaled pistons, was performed. Afterward, the gasoline injector position was shifted to the head cylinder center for the stock piston. NOX emissions were improved; however, soot was increased slightly.
Journal Article

Analysis of Dimensions of Surface Textures on Lubrication and Friction of an Engine

2021-06-10
Abstract To improve the lubrication and friction of the crankpin bearing (CB) in the engine, the design of surface textures on the bearing surface is proposed and researched based on the CB hydrodynamic dynamic model. To enhance the reliability of the research results and its closeness to reality, the optimal CB parameters, the experimental data of the external dynamic load W0 acting on the crankpin, and the CB surface roughness in the well-known existing researches are referred to as input data for the simulation process. The effect of the distribution density {n, m}, diameter D, and depth of the microcircular textures hd on improving the lubrication and friction are then analyzed based on the indexes of the increase in the oil film pressure, decrease in the solid asperity contacts in the mixed lubrication region (MLR), friction force, and coefficient of friction (COF) between the crankpin and bearing surfaces, respectively.
Journal Article

Analysis of Torque Waveforms in Two-Cylinder Engines for Ultralight Aircraft Propulsion Operating on 0W-8 and 0W-16 Oils at High Thermal Loads Using the Diamond-Like Carbon Composite Coating

2021-07-28
Abstract Piston internal combustion engines used in the propulsion of ultralight aircraft are characterized by special operating conditions, especially an increased engine oil temperature. Most of the engines intended for the drive of the propeller drivetrain are air cooled. Failure to introduce an additional cooling agent so as to absorb and remove heat from the running engine makes the average lubricating oil temperature rise to about 140°C in the pistohn ring part. With such a thermal load, changes in the moments of resistance to motion of the engine are difficult to determine in the conditions of engine tests due to difficulties in temperature stabilization. The performance of aircraft engines requires taking into account many variables that are difficult to determine, which may affect changes in the moment of resistance to movement of the engine, especially when using oils of low dynamic viscosity.
Journal Article

Application of Low-Cost Transducers for Indirect In-Cylinder Pressure Measurements

2022-04-25
Abstract The aim of this work is to present the results achieved in the evaluation of combustion metrics using low-cost sensors for the indirect measurement of cylinder pressure. The developed transducers are piezoelectric rings placed under the spark plugs. Tests were carried out on three different engines running in various speed and load conditions. The article shows the characteristics of the signals generated by the piezo-ring sensors, compared to those coming from laboratory-grade pressure transducers: focus is to assess the achievable accuracy in the determination of frequently used combustion metrics, such as those related to knock intensity (Maximum Amplitude of Pressure Oscillations, MAPO), combustion phasing (MFB10, MFB50, …), and peak pressure.
Journal Article

Applying the Hilbert Envelope Method to Refine the Ultrasonic Technique for Piston Ring Oil Film Thickness Measurements in a Marine Diesel Engine

2022-04-21
Abstract The greatest frictional contributor in an internal combustion engine is the contact between the piston ring pack and cylinder liner. Therefore, an improved lubrication regime has the potential to raise engine efficiency while lowering emissions, aiding to meet environmental regulations. Previous ultrasonic measurements of the oil film thickness (OFT) between piston rings and the cylinder liner in a marine engine have been subject to several unexpected trends. This article refines the measurement to identify and remove these factors, the trends were found to have arisen due to the detection of ultrasonic reflections from the piston ring outside of the expected alignment zone. The extent of these undesired reflections is thought to be due to the liner thickness providing a relatively large distance for spreading of the ultrasonic wavefront.
Journal Article

Assessment of Tribological Characteristics of Low-Sulfur and Ultralow-Sulfur Diesel under Practical Load and Temperature Scenarios

2021-06-10
Abstract The lubricating properties of diesel are an imperative aspect for the optimal functioning of fuel injection components. Regulatory standards followed by refineries utilize accelerated wear testing methodologies. These tests provide indicative results for judging the lubricity but are not conclusive for determining wear in functional applications attributed to higher loads and other environmental factors. In the course of this article, a tribological evaluation was carried out on Low-Sulfur Diesel (LSD) and Ultralow Sulfur Diesel (ULSD) by utilizing modified test parameters incorporating higher loads and a more extensive gradient of temperature on High-Frequency Reciprocating Rig (HFRR) tribotester. The variance in the resultant coefficient of friction (COF) and wear scar concerning the change in parameters was observed as well as a comparative analysis was drawn between both test fuels.
Journal Article

Auto-ignition and Detonation Induced by Density Gradient of Surrogate Lubricant under Boosted-Gasoline-Engine-Like Condition

2021-03-12
Abstract Low-Speed Pre-Ignition (LSPI) events occur in highly boosted direct-injected gasoline engines when operating at a low-speed and high-load region. The LSPI event appears once per several thousand cycles; once happening, it could last for a few cycles and suddenly returns to normal combustion. These features are coincident with intermittent lubricating oil piston crown scattering behavior, which experiences accumulation and heavy scattering. In this work, the theory originally proposed by Bradley to classify the auto-ignition propagation modes triggered by hot spots is developed to be capable of analyzing the reaction front propagation generated from the lubricating oil clouds, where the auto-ignition is induced by a reactivity gradient. A critical condition related to the interaction between the reaction and acoustic waves is defined with respect to the density gradient that characterizes the oil clouds.
Journal Article

Comparative Study on the Effect of Different Lubricating Oil Additives on the Tribological Properties of Bearing Steel

2020-01-23
Abstract The purpose of this article is to study the antifriction and anti-wear effect of GCr15 bearing steel under paraffin base oil and the base oil with two additives of T405 sulfurized olefin and nano-MoS2 and compare the synergistic lubrication effect of two different additives (MoS2 and T405) in paraffin base oil. The tribological properties of GCr15 bearing steel under different lubrication conditions were tested on a ball-on-disk tribometer. The three-dimensional profile of disk’s worn surfaces and the scanning electron microscope (SEM) micrographs of corresponding steel balls were analyzed at the same time. The wettability of lubricating oils on the surface of friction pairs and the dispersibility of MoS2 in base oil were characterized.
Journal Article

Comparison of Ring-Liner Oil Film Thickness Resulting from Different Injector Designs in a Diesel Marine Engine Using an Ultrasound Measurement Method

2021-05-28
Abstract The global drive to combat climate change is a primary driving force towards producing greener and cleaner marine diesel engines to meet emission legislations. The main cause of an engine’s parasitic frictional loss is the interaction between piston rings and the cylinder liner. Therefore, the piston ring lubricating oil film has been the focus of much prior research, chiefly focusing on small-scale automotive engines. This work employs the ultrasonic reflectometry technique to evaluate the oil film formation resulting from different lubricant injector arrangements on a large two-stroke marine diesel engine. A series of piezoelectric transducers close to the top dead center (TDC) have quantified the oil film thickness (OFT) across three engine loading levels and three injector configurations. The injector configurations compare a more traditional pulse-jet (PJ) injector to a needle lift-type (NLT) injector, which reduces the rate of lubricant atomization.
Journal Article

Correlating Particle Number Emissions to the Rotation of the Piston Ring

2023-01-24
Abstract Reaching the particle emissions regulatory limits for the combustion engine is a challenge for developers. Particle filters have been the standard solution to reduce particle emissions, but filters are limited in storage capacity and need to be regenerated, a process emitting more carbon dioxide (CO2) as more fuel is consumed to regenerate the filter. In previous research, it was found that the engine can emit large spikes in particle numbers (PNs) under stationary operating conditions. These spikes were several orders of magnitude higher than for the base particle emissions level and occurred seemingly at random. The source of the spikes was believed to be the cylinder-piston-ring system and as 50–99% of the particles stemmed from these spikes, the influence on the particle emissions made it an interesting investigation to find the root cause of it. The experiments were performed for different piston ring loads, locked ring positions, and different oil compositions.
Journal Article

Cylinder Deactivation Strategies to Stabilize High Stratification Gasoline Compression Ignition Down to Idle

2021-03-22
Abstract Gasoline compression ignition (GCI) is a family of combustion strategies that can be used to achieve low emissions and fuel consumption in medium- and heavy-duty applications while taking advantage of projected cost advantages of gasoline over diesel fuel in the future. In particular, high fuel stratification GCI (HFS-GCI) has been shown to have CDC-like thermal efficiency and combustion control by utilizing near-TDC injection timings to achieve a principally mixing-controlled combustion event. The stability of HFS-GCI combustion at low loads has been shown to be the principal challenge to its implementation in production applications and in this study, a novel class of cylinder deactivation strategies to achieve stable HFS-GCI combustion down to no-load (0 kW brake power) is proposed and studied. 1D simulations were carried out in GT-POWER and coupled experiments were carried out in a single-cylinder medium-duty test cell with an on-road 87AKI gasoline fuel.
X