Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 11133
Technical Paper

<PP/SEBS> Compounds: Sealing an Easier Future for Automotive Designers and Specifiers

2002-07-09
2002-01-1997
There is a definite trend toward the increasing use of “Glass Encapsulation Technology” in the automotive industry. In this technology a glass object such as a window is placed within a mould and an elastomer is injected around the window giving a tight sealing system. A wide variety of materials are currently used as the sealing materials in either static or semi-static encapsulated glazing systems, including a wide range of “elastomers”. New thermoplastic elastomer compounds are being developed that are characterized by their consistent properties; including high melt-fluidity, very good surface appearance, sealing properties, and resistance to weathering. Compound performance is highly dependent on formulation variables as well as the chemistries of the base materials. KRATON® SEBS polymers1 are block copolymers of styrene and ethylene/butylene.
Technical Paper

(Paint) Film Finishing in Practice

1992-02-01
920732
(Paint) film as an alternative to spray applied paint has received growing attention in recent years. The potential for economic and environmental advantage and quality enhancement with this technology has been reported in several technical papers (Ref. 1, 3 and 4). The actual practice of film finishing, however, has received only limited notice. Film finishes have been applied to aluminum, stainless steel, PVC, and ABS. Starting in 1982, part applications include: wheel covers, door edge guards, window surrounds, roof drip moldings, lower windshield moldings, rocker panels, body side moldings, B pillars, and A pillars. Industry awareness and acceptance of film finishing as a viable alternative to spray applied paint is increasing. The two technologies are similar in many ways, yet distinctly different in other ways. They share a common goal: To yield a durable finish, economically and with superior visual impact. This paper reviews the unique aspects of film finishing.
Technical Paper

1-D Model of Roots Type Supercharger

2013-04-08
2013-01-0927
This paper introduces research work on 1-D model of Roots type supercharger with helical gears using 1-D simulation tool. Today, passenger car engine design follows approach of downsizing and the reduction of number of engine cylinders. Superchargers alone or their combination with turbochargers can fulfill low-end demands on engine torque for such engines. Moreover, low temperature combustion of lean mixture at low engine loads becomes popular (HCCI, PCCI) requiring high boost pressure of EGR/fresh air mixture at low exhaust gas temperature, which poses too high demands on turbocharger efficiency. The main objective of this paper is to describe Roots charger features and to amend Roots charger design.
Technical Paper

100,000 HP Gas Turbine Load Test Facility

1976-02-01
760314
The problem of testing large gas turbines at full load in the factory has been solved with the construction of a load test facility utilizing a gas turbine compressor as the load absorption device. Design philosophy and features are reviewed, and a summary, of operating experience to date is presented.
Technical Paper

12 Present situation of Automated Guided Vehicle

2002-10-29
2002-32-1781
Many automated guided golf cars using the electromagnetic guide technology are used in Japan to obtain more convenient and safer golf play. Now this technology is beginning to be used outside of the golf course as an on-demand people mover system. This paper presents an example of the engineering system of automated guided golf cars along for the 2 principles of automated guided vehicle. The first principle is “the steering control system including the automatic sensitivity adjustment function”, and the other principle is “the vehicle speed control system”.
Technical Paper

14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study

2006-04-03
2006-01-1277
A vehicle model is an important factor in the development of vehicle control systems. Various vehicle models having different complexities, assumptions, and limitations have been developed and applied to many different vehicle control systems. A 14 DOF vehicle model that includes a roll center as well as non-linear effects due to vehicle roll and pitch angles and unsprung mass inertias, is developed. From this model, the limitations and validity of lower order models which employ different assumptions for simplification of dynamic equations are investigated by analyzing their effect on vehicle roll response through simulation. The possible limitation of the 14 DOF model compared to an actual vehicle is also discussed.
Technical Paper

180 Cu Yd Stripping Shovel

1967-02-01
670745
Because of the size and weight of the various components going into the machine, new approaches were used to solve the practical limitations of manufacturing facilities, shipping clearances, and erection procedures. Although the general appearance of the machine is similar to previous units, there are a number of new design features incorporated in the unit. This paper will be limited to the major design considerations as follows: adaption to stripping two seams of coal simultaneously; dipper with two doors; computerized hydraulic steering maintaining Ackerman correction; double end drive crawlers and belt tensioning; and electrical innovations.
Technical Paper

1974 Vw Energy-Absorbing Bumper System

1973-02-01
730033
The energy-absorbing bumper system designed for the 1974 Volkswagen in described. Theoretical requirements in bumper design are explained, with emphasis on bumper height, energy tolerance needs, energy absorption, and systems for absorbing the energy involved. The six systems studied are assessed, and the final design chosen is explained. The paper also compares bumper requirements as specified in Europe and the United States.
Technical Paper

1989 Suzuki Sidekick/Geo Tracker Body structure Analysis

1989-11-01
892536
This paper presents a summary of body structural analysis applied to the 1989 Suzuki Sidekick/Geo Tracker at various stages of development and design. The structure analysis techniques were applied previously to rigidity, vibration, strength, crashworthiness and optimization. The studies confirm that the CAE technique for body structure analysis is more beneficial if it is utilized in the earlier structure development stages particularly for vibration and crashworthiness. Through the extensive use of the structural analysis technique in conjunction with the experiment, the design concept of the Sidekick/Tracker body has been optimized to a most extent.
Technical Paper

1998 POLARIS INDY TRAIL: An Entry by Minnesota State University, Mankato in the “Clean Snowmobile Challenge 2000”

2000-09-11
2000-01-2574
A student team from Minnesota State University, Mankato's Automotive Engineering Technology program entered the Clean Snowmobile Challenge 2000. A 1998 Polaris Indy Trail was converted to indirect fuel injection running on a computer controlled closed loop fuel system. Also chassis, exhaust, and hood design modifications were made. The snowmobile was designed to compete in eight events. These events included acceleration, emissions, hill climb, cold start, noise, fuel economy/range, handling/driveability, and static display. The snowmobile modifications involved every aspect of the snowmobile with special emphasis on emissions and noise. Laboratory testing led to the final design. This paper details the modifications and test results.
Technical Paper

1D Modeling of HVAC Unit Air Flow for Automatic Climate Control Simulations

2021-04-06
2021-01-0215
Advanced control techniques are widely used in different automotive applications including climate control. Significant costs associated with the development and calibration of such controllers can be reduced if these tasks are conducted in a virtual environment. Such a virtual environment can be developed by integrating the controller with the system model. Different scenarios can be then simulated to make sure functional objectives of the system are met. 1D models provide the necessary level of accuracy without imposing extra computational cost in such virtual environments. As such, they are perfect candidates for model, hardware or software-in-the loop validation benches for controls. Performance of a heating, ventilation and air-conditioning (HVAC) system can be controlled through the settings of the components like mode door, blend door, recirculation door, blower, and the compressor.
Journal Article

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

2011-04-12
2011-01-1147
Turbocharging technique will play a fundamental role in the near future not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions both in Spark Ignition and diesel automotive applications. To achieve excellent engine performance for road application, it is necessary to overcome some typical turbocharging drawbacks i.e., low end torque level and transient response. Experimental studies, developed on dedicated test facilities, can supply a lot of information to optimize the engine-turbocharger matching, especially if tests can be extended to the typical engine operating conditions (unsteady flow). Different numerical procedures have been developed at the University of Naples to predict automotive turbocharger compressor performance both under steady and unsteady flow conditions. A classical 1D approach, based on the employment of compressor characteristic maps, was firstly followed.
Technical Paper

1D Simulation-Based Methodology for Automotive Grill Opening Area Optimization

2021-09-15
2021-28-0133
This paper discusses the methodology setup for grill opening area prediction at the early development phase of the product development lifecycle, using a commercially available 1D simulation tool- AMESIM. Representative under hood has been modeled using Grill, Condenser, Radiator, intercooler, fan, and engine components. Vehicle velocity is used as an input to derive the airflow passing through the grill and other under-hood components based on ram air coefficient, pressure drop through different components (Grill, Heat exchanger, Fan & Engine). This airflow is used to predict the top tank temperature of the radiator. Derived airflow is correlated with airflow obtained from CFD simulation. A balance has been achieved between cooling drag & fan power consumption at different grill opening areas for target top tank temperature. Top tank temperature has been predicted at two different extreme engine heat rejection operating points.
Technical Paper

2 Development of Motorcycle Using Electronic Controlled Continuously Variable Transmission

2002-10-29
2002-32-1771
Recently, society has demanded better performance from motorcycle regarding comfort, fuel economy, exhaust emission, and safety, in addition to traditional performance indicators. In the development of power trains, therefore, compact and lightweight hardware with improved transmission efficiency has been introduced, along with system technologies that optimize the engine revolution speed range and reduction ratio to suit driving conditions. This approach focuses on improving overall efficiency and addressing the issues of easier drivability and greater active safety. Electronic Controlled Continuously Variable Transmission (ECCVT) with high transmission efficiency is characterized by a Dry Hybrid Belt, in addition to an electronic controlled DC motor-driven shift mechanism, and an Electronic Controlled wet multi-plates Clutch (ECC).
Technical Paper

2 Stroke Fuel Injected Outboard Motor with Oxygen Sensor Feedback Control System

1997-10-27
978491
This paper describes new 2 stroke fuel injected spark ignition outboard motor equipped with unique oxygen sensor feed back control system to assure constantly optimized air/fuel ratio. First, the general concept and the engineering target of commercial model are explained, and then the design and arrangement of oxygen sensor feedback fuel injection control system are described. Common automotive oxygen sensor is utilized in this system, and it is devised to overcome the problems inherent in 2-stroke engines. This paper also describes the controlled combustion system that enhances consistent and stable performance, and improves fuel efficiency. Applying these technologies, 40% less fuel consumption in cruise range was demonstrated by the comparative test with conventional fuel injected 2-stroke model.
Journal Article

2-Drive Motor Control Unit for Electric Power Steering

2017-03-28
2017-01-1485
The electric power steering (EPS) is increasing its number since there are many advantages compared to hydraulic power steering. The EPS saves fuel and eliminates hydraulic fluid. Also, it is more suitable to the cooperation control with the other vehicle components. The EPS is now expanding to the heavier vehicle with the advance in the power electronics. In order to meet customer's needs, such as down-sizing, lower failure rate and lower price, we have developed the new motor control unit (MCU) for the EPS. The motor and the electric control unit (ECU) were integrated for the better installation. We adopted new technologies of redundant 2-drive design for more safe EPS. “2-drive Motor Control technology” which consists of dual winding, two torque sensors and two inverter drive units. In our developed MCU, even if there is a failure in one of the drive unit, the assistance of the EPS can be maintained with the other drive unit.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyurethane Construction

1995-02-01
950048
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyurethane (PUR) plastic inner layer. Windshield impact tests were conducted using a linear impactor test facility. Principle among the findings was that the impact response of prototype PUR 2-ply windshields does not differ that significantly from that of baseline 3-ply HPR (High Penetration Resistance) windshields for the subcompact vehicle geometry tested. However, the impact responses of both PUR 2-ply and 3-ply HPR subcompact vehicle windshields were found to be highly variable. Average performance of either construction could thus be enhanced if ways could be found (and then implemented) to reduce this variability.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyvinyl Butyral/Polyester Construction

1995-02-01
950047
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyvinyl butyral / polyester (PVB/PET) inner plastic laminate. Windshield impact tests were conducted using a linear impactor test facility. Principal among the findings was that the measured impact response of prototype PVB/PET 2-ply windshields was highly variable. Average performance of this construction could thus be improved if ways could be found (and then implemented) to reduce this variability.
Technical Paper

2000 HP Tractor-Trailer for the 21st Century

2002-11-18
2002-01-3141
This paper presents the conceptual design of a high-power, high-speed tractor-trailer for severe duty applications. Design of the tractor-trailer introduces several new concepts, including the general vehicle architecture, a new electrical transmission system and a new electric tandem axle. The vehicle architecture consists of a low drag cab concept with a fully integrated turbo-generator power source, an exhaust gas electric decontamination system and auxiliaries. The electric transmission introduces a new combination of electrical machines and power electronics designed to perform under maximum load with minimum dimension, weight and price. The electric tandem axle is a new concept of an all-wheel steering independent suspension with virtual electromagnetic differential.
Technical Paper

2002 Pontiac Montana Frequency Improvements Employing Structural Foam

2001-04-30
2001-01-1609
This paper documents a joint development process between General Motors and Dow Automotive to improve primary body structure frequencies on the GM family of midsize vans by utilizing cavity-filling structural foam. Optimum foam locations, foam quantity, and foam density within the body structure were determined by employing both math-based modeling and vehicle hardware testing techniques. Finite element analysis (FEA) simulations of the Body-In-White (BIW) and “trimmed body” were used to predict the global body structure modes and associated resonant frequencies with and without structural foam. The objective of the FEA activity was to quantify frequency improvements to the primary body structure modes of matchboxing, bending, and torsion when using structural foam. Comprehensive hardware testing on the vehicle was also executed to validate the frequency improvements observed in the FEA results.
X