Refine Your Search

Topic

Author

Search Results

Standard

2-D CAD Template for SAE J826 H-point Machine

2022-02-18
CURRENT
J826/2_202202
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

2-D CAD Template for SAE J826 H-point Machine

2016-10-13
HISTORICAL
J826/2_201610
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

3D CAD for SAE J826 H-Point Machine

2021-11-16
CURRENT
J826/3_202111
This document describes the 3D computer-aided design (CAD) parts and file formats for the HPM-1 H-point machine available from SAE. The intended purpose for this information is to provide a master CAD reference for design and benchmarking.
Standard

A Guide to the Reliability-Centered Maintenance (Rcm) Standard

2023-11-08
WIP
JA1012
SAE JA1012 (“A Guide to the Reliability-Centered Maintenance (RCM) Standard”) amplifies and clarifies each of the key criteria listed in SAE JA1011 (“Evaluation Criteria for RCM Processes”), and summarizes additional issues that must be addressed in order to apply RCM successfully.
Standard

AERODYNAMIC TESTING OF ROAD VEHICLES

1990-03-01
HISTORICAL
J2071_199003
As a simulation of road driving, wind tunnel testing of full-size vehicles produces certain errors in the aerodynamic forces, aerodynamic moments, and surface pressures. The magnitude of these errors, in general, depends on the following: a Flow quality b Determination of the reference dynamic pressure c Wind tunnel floor boundary layer d Test section geometry and position of the car within that geometry e Shape of the vehicle f Blockage ratio: The ratio of the cross-sectional area of the vehicle to the cross-sectional area of the wind tunnel nozzle g Wheel rotation h Internal flow in the model The SAE Standards Committee, Open Throat Wind Tunnel Adjustments had as a goal to document the knowledge of the influence of model interference on wind tunnel test results for automotive open jet wind tunnels.
Standard

AERODYNAMIC TESTING OF ROAD VEHICLES - OPEN THROAT WIND TUNNEL ADJUSTMENT

1994-06-01
CURRENT
J2071_199406
As a simulation of road driving, wind tunnel testing of full-size vehicles produces certain errors in the aerodynamic forces, aerodynamic moments, and surface pressures. The magnitude of these errors, in general, depends on the following: a Flow quality b Determination of the reference dynamic pressure c Wind tunnel floor boundary layer d Test section geometry and position of the car within that geometry e Shape of the vehicle f Blockage ratio: The ratio of the cross-sectional area of the vehicle to the cross-sectional area of the wind tunnel nozzle g Wheel rotation h Internal flow in the model The SAE Standards Committee, Open Throat Wind Tunnel Adjustments had as a goal to document the knowledge of the influence of model interference on wind tunnel test results for automotive open jet wind tunnels.
Standard

AERODYNAMIC TESTING OF ROAD VEHICLES—TESTING METHODS AND PROCEDURES

1993-01-01
HISTORICAL
J2084_199301
The scope of this SAE Information Report is confined to wind-tunnel testing, although it is recognized that many aspects of the aerodynamic characteristics of road vehicles can be investigated in other test facilities (such as water-tanks) or, especially, on the road. For example, coastdown testing is often used to determine aerodynamic drag (either in isolation or as part of the total resistance), and artificial gust generators are used to investigate the sensitivity of vehicles to cross-wind gusts. Also excluded from the present Report are climatic wind-tunnel tests of road vehicles, which are defined in more detail in Section 3. The Report covers the aerodynamic requirements of a wind-tunnel for automotive testing, together with the facility equipment needed and the requirements affecting the test vehicle or model.
Standard

AIR BRAKE GLADHAND SERVICE (CONTROL) AND EMERGENCY (SUPPLY) LINE COUPLERS

1967-11-01
HISTORICAL
J318_196711
This SAE Recommended Practice is intended to provide a design, critical dimensions, performance requirements, and identification for gladhand-type air line couplers used to connect the brake systems of trucks, truck-tractors, and trailers when these vehicles are joined to operate as a combination unit.
Standard

AUTOMOTIVE AIR CONDITIONING HOSE

1988-07-01
HISTORICAL
J51_198807
This specification covers reinforced rubber and reinforced thermoplastic hose, or hose assemblies, intended for conducting liquid and gaseous dichlorodifluoromethane (refrigerant 12) in automotive air conditioning systems. The hose shall be designed to minimize permeation of refrigerant 12 and contamination of the system and to be serviceable over a temperature range of -30 to 120°C (-22 to 248°F). Specific construction details are to be agreed upon between user and supplier.
Standard

AUTOMOTIVE AIR CONDITIONING HOSE

1985-05-01
HISTORICAL
J51_198505
This specification covers reinforced rubber and reinforced thermoplastic hose, or hose assemblies, intended for conducting liquid and gaseous dichlorodifluoromethane (refrigerant 12) in automotive air conditioning systems. The hose shall be designed to minimize permeation of refrigerant 12 and contamination of the system and to be serviceable over a temperature range of −30 to 120°C (−22 to 248°F). Specific construction details are to be agreed upon between user and supplier.
Standard

AUTOMOTIVE AIR-CONDITIONING HOSE

1989-05-01
HISTORICAL
J51_198905
This specification covers reinforced rubber and reinforced thermoplastic hose, or hose assemblies, intended for conducting liquid and gaseous dichlorodifluoromethane (refrigerant 12) in automotive air-conditioning systems. The hose shall be designed to minimize permeation of refrigerant 12 and contamination of the system and to be serviceable over a temperature range of -30 to 120°C (-22 to 248°F). Specific construction details are to be agreed upon between user and supplier.
Standard

AUTOMOTIVE GASOLINES

1993-01-01
HISTORICAL
J312_199301
This SAE Recommended Practice summarizes the composition of modern automotive gasolines, the significance of their physical and chemical characteristics, and the pertinent test methods for defining or evaluating these properties.
Standard

AUTOMOTIVE GASOLINES

1997-05-01
HISTORICAL
J312_199705
This SAE Recommended Practice summarizes the composition of modern automotive gasolines, the significance of their physical and chemical characteristics, and the pertinent test methods for defining or evaluating these properties.
Standard

AUTOMOTIVE GRAY IRON CASTINGS

1993-03-01
HISTORICAL
J431_199303
This SAE Standard covers the hardness, tensile strength, and microstructural requirements for gray iron sand mold castings used in automotive and allied industries. The chemical requirements for alloy gray iron automotive camshafts are included in the document under castings for special application with controlled composition and microstructure. Appendix A provides general information on application of gray iron in automotive castings and chemical composition to meet hardness, microstructural, and other properties needed for particular service conditions. Casting tensile strength estimates are provided in Appendix A for design reference.
Standard

AUTOMOTIVE METALLURGICAL JOINING

1970-10-01
HISTORICAL
J836_197010
This report is an abbreviated summary of metallurgical joining by welding, brazing, and soldering. It is generally intended to reflect current usage in the automotive industry; however, it does include some of the more recently developed processes. More comprehensive coverage of materials, processing details, and equipment required may be found in the Welding Handbook, Soldering Manual, and other publications of the American Welding Society and the American Society for Testing and Materials. AWS Automotive Welding Committee publications on Recommended Practices are particularly recommended for the design or product engineer. This report is not intended to cover mechanical joining such as rivets or screw fasteners, or chemical joining processes such as adhesive joining.
Standard

AUTOMOTIVE RUBBER MATS

1982-05-01
HISTORICAL
J80_198205
This specification covers the requirements for rubber floor mats made from five types of rubber compounds as required by the physical property requirements of the application.
X