Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Dual Clutch Torque Converter for Dual Input Shaft Transmissions

2013-04-08
2013-01-0232
This paper presents an alternative launch device for layshaft dual clutch transmissions (DCT's). The launch device incorporates a hydrodynamic torque converter, a lockup clutch with controlled slip capability and two wet multi-plate clutches to engage the input shafts of the transmission. The device is intended to overcome the deficiencies associated with using conventional dry or wet launch clutches in DCT's, such as limited torque capacity at vehicle launch, clutch thermal capacity and cooling, launch shudder, lubricant quality and requirement for interval oil changes. The alternative device enhances drive quality and performance at vehicle launch and adds the capability of controlled capacity slip to attenuate gear rattle without early downshifting. Parasitic torque loss will increase but is shown not to drastically influence fuel consumption compared to a dry clutch system, however synchronizer engagement can become a concern at cold operating temperatures.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Journal Article

Coordinated Torque, Energy and Clutch Control Strategy for Downshifts in P2 Parallel xHEV Powertrains

2021-04-06
2021-01-0696
This paper describes a methodology for investigating the controls coordination of clutch and propulsion torque sources relative to clutch energy, electrification energy consumption and output torque profile for offgoing controlled downshifts in P2 parallel xHEV powertrain configurations. The focus is on an 8 speed planetary automatic transmission, but the approach is equally applicable to any powerflow design with clutch-to-clutch shifting. The modeling technique is for an overall control strategy relative to achieving a targeted transmission input speed profile. A reduced order model of the transmission system is presented that accounts for input shaft acceleration and compensation of inertial contributions to offgoing clutch torque and transmission output torque.
Technical Paper

Correlated Simulation of Pseudo Transient Torque Converter Clutch Engagement Using Coupled Fluid Structure Interaction

2023-04-11
2023-01-0457
This investigation utilizes a correlated fluid-structure interaction (FSI) model of the torque converter and clutch assembly to perform a pseudo transient clutch engagement at steady state operating conditions. The pseudo transient condition consists of a series of nine steady state simulations that transition the torque converter clutch from fully released to near full lockup at a constant input torque and output speed representative of a highway cruising speed. The flow and pressured field of the torque converter torus and clutch are solved using a CFD model and then passed along to a transient structural model to determine the torque capacity of the lockup clutch. Bulk property assumptions regarding the friction material, deformation of the clutch plate, and deflection of supporting structures were made to simplify the model setup, run time, and solution convergence.
Technical Paper

Determining Physical Properties for Rotating Components Using a Free-Free Torsional FRF Technique

2011-05-17
2011-01-1663
This paper presents a test methodology to determine the physical properties of stiffness and damping for powertrain rotating components using a free-free torsional frequency response measurement. The test methodology utilizes free-free boundary conditions and traditional modal test techniques applied to symmetric rotating components with substantially large bounding masses of known inertia. A modal test on the rotating component is executed by mounting accelerometers on opposing tangential bosses in the same direction on each of the inertial masses and impacting one of the bosses with a modal hammer to acquire frequency response functions (FRF's). Physical properties are then extracted from the FRF's using fundamental vibration relationships for an assumed two degree of freedom system. Stiffness and damping values for a variety of hollow tube carbon fiber drive shafts and a comparable steel-aluminum shaft are reported using the methodology presented.
Technical Paper

Dynamic Characterization of a Twin Plate Torque Converter Clutch During Controlled Slip

2024-04-09
2024-01-2715
This paper details testing for torque converter clutch (TCC) characterization during steady state and dynamic operation under controlled slip conditions on a dynamometer setup. The subject torque converter under test is a twin plate clutch with a dual stage turbine damper without a centrifugal pendulum absorber. An overview is provided of the dynamometer setup, hydraulic system and control techniques for regulating the apply pressure to the torque converter and clutch. To quantify the performance of the clutch in terms of control stability, pressure to torque relationship and the dynamic behavior during apply and release, a matrix of oil temperatures, output speeds, input torques, and clutch apply pressures were imposed upon the torque converter.
Journal Article

Dynamic Torque Characteristics of the Hydrodynamic Torque Converter

2011-05-17
2011-01-1540
The objective of this investigation is to characterize the torsional characteristics of the hydrodynamic torque converter. Analytical and experimental techniques are used to quantify the relationship between torsional oscillations imposed on the pump to those at the turbine as a function of frequency, operating point and design. A detailed model of the hydrodynamic torque converter based upon one-dimensional flow theory is used to establish fundamental torsional behavior independent of the downstream mechanical system. A simplified linear spring-mass-damper representation of the hydrodynamic torque converter is derived whose coefficients are proportional to pump speed for a particular design. A transmission dynamometer test cell with the capability to produce torsional oscillations was used to develop frequency response functions for various torque converters in a transmission, operating at steady state conditions.
Journal Article

Optimizing 12 Volt Start - Stop for Conventional Powertrains

2011-04-12
2011-01-0699
A cost effective means of achieving fuel economy gains in conventional powertrain is to utilize a 12 volt start/stop (S/S) system to turn the engine off and on during periods of vehicle idle. This paper presents powertrain integration issues specific to a 12 volt S/S system and the powertrain hardware content and calibration strategies required to execute a 12 volt S/S system for start ability, reduced noise and vibration (N&V) and vehicle launch. A correlated lumped parameter modeling methodology is used to determine engine startup profiles, starter hardware and intake cam park position requirements based upon vehicle level response to the startup event. Optimization of the engine startup is reported for a multitude of powertrain configurations, including transverse and longitudinal arrangements with manual, automatic and dual clutch transmissions.
Journal Article

Performance Characterization of Automatic Transmission Upshifts with Reduced Shift Times

2015-04-14
2015-01-1086
As the number of fixed gear ratios in automatic transmissions continues to increase in the pursuit of powertrain system efficiency, particular consideration must continue to be focused on optimizing the design for shifting performance. This investigation focuses on the effect of shift time on the performance attributes of shift quality, durability, on schedule fuel consumption and enablers to further reduce shift time. A review of fundamental design features that enable reduced shift times in both planetary and dual clutch transmissions is presented along with key operating features of both the transmission and engine/prime mover. A lumped parameter metric is proposed to assess and compare the upshift controllability of new transmission architectures and powerflows using simple analysis. The durability of fast shift times during performance maneuvers are quantified through calculation of shifting clutch energy and power from analysis and form measurements on a powertrain dynamometer.
Journal Article

Performance Characterization of a Triple Input Clutch, Layshaft Automatic Transmission Using Energy Analysis

2013-12-15
2013-01-9042
This paper details the design and operating attributes of a triple input clutch, layshaft automatic transmission (TCT) with a torque converter in a rear wheel drive passenger vehicle. The objectives of the TCT design are to reduce fuel consumption while increasing acceleration performance through the design of the gearing arrangement, shift actuation system and selection of gear ratios and progression. A systematic comparison of an 8-speed TCT design is made against a hypothetical 8-speed planetary automatic transmission (AT) with torque converter using an energy analysis model based upon empirical data and first principles of vehicle-powertrain systems. It was found that the 8-speed TCT design has the potential to provide an approximate 3% reduction in fuel consumption, a 3% decrease in 0-100 kph time and 30% reduction in energy loss relative to a comparable 8-speed planetary AT with an idealized logarithmic ratio progression.
Technical Paper

Testing Methods and Signal Processing Strategies for Automatic Transmission Transient Multiplexed Pressure Data

2019-06-05
2019-01-1500
Transmissions have multiple transient events that occur from gear shifting to torque converter clutch application. These transients can be difficult to capture and observe. A six speed front wheeled drive transmission was instrumented with pressure transducers to measure clutches and the torque converter. Due to size restrictions internal to the torque converter the data had to be multiplexed across three different transmitters. A method to capture a transient event through the use of multiplexed data was developed to create a data set with the transient event occurring on each channel. Once testing is completed, the data has to be split into individual channels and synced with the operational data. The data then can be used in both time and frequency domain analysis. It is important to understand that the data is not continuous and must be taken into consideration when post processing it for further results.
Journal Article

Torque Converter Clutch Optimization: Improving Fuel Economy and Reducing Noise and Vibration

2011-04-12
2011-01-0146
The torque converter and torque converter clutch are critical devices governing overall power transfer efficiency in automatic transmission powertrains. With calibrations becoming more aggressive to meet increasing fuel economy standards, the torque converter clutch is being applied over a wider range of driving conditions. At low engine speed and high engine torque, noise and vibration concerns originating from the driveline, powertrain or vehicle structure can supersede aggressive torque converter clutch scheduling. Understanding the torsional characteristics of the torque converter clutch and its interaction with the drivetrain can lead to a more robust design, operation in regions otherwise restricted by noise and vibration, and potential fuel economy improvement.
Technical Paper

Torsional Vibration Analysis of Six Speed MT Transmission and Driveline from Road to Lab

2017-06-05
2017-01-1845
When a manual transmission (MT) powertrain is subjected to high speeds and high torques, the vehicle driveshaft, and other components experience an increase in stored potential energy. When the engine and driveshaft are decoupled during an up or down shift, the potential energy is released causing clunk during the shift event. The customer desires a smooth shift thus reduction of clunk will improve experience and satisfaction. In this study, a six-speed MT, rear-wheel-drive (RWD) passenger vehicle was used to experimentally capture acoustic and vibration data during the clunk event. To replicate the in-situ results, additional data was collected and analyzed for powertrain component roll and pitch. A lumped parameter model of key powertrain components was created to replicate the clunk event and correlate with test data. The lumped parameter model was used to modify clutch tip-out parameters, which resulted in reduced prop shaft oscillations.
X