Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 15755
Technical Paper

<PP/SEBS> Compounds: Sealing an Easier Future for Automotive Designers and Specifiers

2002-07-09
2002-01-1997
There is a definite trend toward the increasing use of “Glass Encapsulation Technology” in the automotive industry. In this technology a glass object such as a window is placed within a mould and an elastomer is injected around the window giving a tight sealing system. A wide variety of materials are currently used as the sealing materials in either static or semi-static encapsulated glazing systems, including a wide range of “elastomers”. New thermoplastic elastomer compounds are being developed that are characterized by their consistent properties; including high melt-fluidity, very good surface appearance, sealing properties, and resistance to weathering. Compound performance is highly dependent on formulation variables as well as the chemistries of the base materials. KRATON® SEBS polymers1 are block copolymers of styrene and ethylene/butylene.
Technical Paper

(Paint) Film Finishing in Practice

1992-02-01
920732
(Paint) film as an alternative to spray applied paint has received growing attention in recent years. The potential for economic and environmental advantage and quality enhancement with this technology has been reported in several technical papers (Ref. 1, 3 and 4). The actual practice of film finishing, however, has received only limited notice. Film finishes have been applied to aluminum, stainless steel, PVC, and ABS. Starting in 1982, part applications include: wheel covers, door edge guards, window surrounds, roof drip moldings, lower windshield moldings, rocker panels, body side moldings, B pillars, and A pillars. Industry awareness and acceptance of film finishing as a viable alternative to spray applied paint is increasing. The two technologies are similar in many ways, yet distinctly different in other ways. They share a common goal: To yield a durable finish, economically and with superior visual impact. This paper reviews the unique aspects of film finishing.
Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Technical Paper

14/42V - Electrical Power Supply Systems Consequences for Electrical Interconnections and Switches

2000-08-21
2000-01-3055
This paper provides an overview about the consequences of a 14/42 V - Electrical Power Supply System for the Electrical Interconnection and Switching Technology. It presents design guidelines and solutions for connector systems including advanced applications like fuse and relay boxes and gives an overview of those existing connectors already suited for 42 V and even higher voltages. The problem of arcing due to the increased voltage is discussed for the case that mating and unmating under load has to be taken into consideration. Arcing also has a tremendous impact on the design of 42 V proof relays. Therefore, some basic results be presented along with proposals how these problems can be overcome by appropriate designs. Another part of the paper looks at the electrical power supply system itself. Here interconnection techniques for new battery systems are discussed. Finally, the chances for new technologies are highlighted.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2020-02-25
CURRENT
J2691_202002
This SAE Standard establishes the minimum construction and performance requirements for a 15 pole connector between towing vehicles and trailers, for trucks, trailers, and dollies, for 12 VDC nominal applications in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2018-04-15
HISTORICAL
J2691_201804
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2013-04-09
HISTORICAL
J2691_201304
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742 “Combination 11 Conductors and 4 Pairs ECBS Cable”. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Technical Paper

180 Cu Yd Stripping Shovel

1967-02-01
670745
Because of the size and weight of the various components going into the machine, new approaches were used to solve the practical limitations of manufacturing facilities, shipping clearances, and erection procedures. Although the general appearance of the machine is similar to previous units, there are a number of new design features incorporated in the unit. This paper will be limited to the major design considerations as follows: adaption to stripping two seams of coal simultaneously; dipper with two doors; computerized hydraulic steering maintaining Ackerman correction; double end drive crawlers and belt tensioning; and electrical innovations.
Technical Paper

1963 Pure Oil Performance Trials

1963-01-01
630280
Background of the Pure Oil performance trials on six classes of automobiles is presented and the evolution of test requirements described. Three tests are run: the economy test to establish how far a vehicle can go over a prescribed course on one gallon of gasoline; the acceleration test which determines acceleration time from 25 to 70 mph in seconds; and the braking test where stopping distance in feet is measured for a stop from 60 mph. Each test is described from the point of view of rules, recording instruments, and penalties for infractions of rules. Test results are presented.
Technical Paper

1964 Pure Oil Performance Trials

1964-01-01
640476
A review of the Pure Oil Performance Trials conducted at Daytona International Speedway are presented. Background information pertaining to conducting of tests, design of the equipment, and instrumentation required for the various events are discussed. The performance trials have evolved into three basic tests -- Economy, Acceleration, and Braking. The objective of the Performance Trials is to provide data that motorists can utilize in evaluating new cars and selecting new models.
Technical Paper

1974 Vw Energy-Absorbing Bumper System

1973-02-01
730033
The energy-absorbing bumper system designed for the 1974 Volkswagen in described. Theoretical requirements in bumper design are explained, with emphasis on bumper height, energy tolerance needs, energy absorption, and systems for absorbing the energy involved. The six systems studied are assessed, and the final design chosen is explained. The paper also compares bumper requirements as specified in Europe and the United States.
Technical Paper

1983 Ranger Pickup

1981-11-01
811270
The Ford Ranger will be a domestically built, small pickup truck engineered to many design objectives typical of a fullsize pickup, yet with four cylinder engine fuel efficiency. Ranger is a full-function on-and-off road pickup truck with a uniquely smooth ride and a capacity to carry up to a 725.7 kg. (1600 lb.) payload. The truck features a three passenger body-on-frame cab and a double wall pickup box with provision for 1.2m × 2.4m (4 ft. × 8 ft.) sheets of construction material. Featured in this comprehensive paper are the engineering highlights and innovations contributing to the accomplishment of these Small Truck objectives.
Technical Paper

1989 Suzuki Sidekick/Geo Tracker Body structure Analysis

1989-11-01
892536
This paper presents a summary of body structural analysis applied to the 1989 Suzuki Sidekick/Geo Tracker at various stages of development and design. The structure analysis techniques were applied previously to rigidity, vibration, strength, crashworthiness and optimization. The studies confirm that the CAE technique for body structure analysis is more beneficial if it is utilized in the earlier structure development stages particularly for vibration and crashworthiness. Through the extensive use of the structural analysis technique in conjunction with the experiment, the design concept of the Sidekick/Tracker body has been optimized to a most extent.
Technical Paper

1997 Propane Vehicle Challenge Design Strategy -University of Waterloo

1998-02-23
980491
The conversion design strategy, and emissions and performance results for a dedicated propane, vapour injected, 1995 Dodge Dakota truck are reported. Data is obtained from the University of Waterloo entry in the 1997 Propane Vehicle Challenge. A key feature of the design strategy is its focus on testing and emissions while preserving low engine speed power for drivability. Major changes to the Dakota truck included the following: installation of a custom shaped fuel tank, inclusion of a fuel temperature control module, addition of a vaporizer and a fuel delivery metering unit, installation of a custom vapour distribution manifold, addition of an equivalence ratio electronic controller, inclusion of a wide range oxygen sensor, addition of an exhaust gas recirculation cooler and installation of thermal insulation on the exhaust system. A competition provided natural gas catalyst was used.
Technical Paper

1998 POLARIS INDY TRAIL: An Entry by Minnesota State University, Mankato in the “Clean Snowmobile Challenge 2000”

2000-09-11
2000-01-2574
A student team from Minnesota State University, Mankato's Automotive Engineering Technology program entered the Clean Snowmobile Challenge 2000. A 1998 Polaris Indy Trail was converted to indirect fuel injection running on a computer controlled closed loop fuel system. Also chassis, exhaust, and hood design modifications were made. The snowmobile was designed to compete in eight events. These events included acceleration, emissions, hill climb, cold start, noise, fuel economy/range, handling/driveability, and static display. The snowmobile modifications involved every aspect of the snowmobile with special emphasis on emissions and noise. Laboratory testing led to the final design. This paper details the modifications and test results.
Technical Paper

1D Modeling of HVAC Unit Air Flow for Automatic Climate Control Simulations

2021-04-06
2021-01-0215
Advanced control techniques are widely used in different automotive applications including climate control. Significant costs associated with the development and calibration of such controllers can be reduced if these tasks are conducted in a virtual environment. Such a virtual environment can be developed by integrating the controller with the system model. Different scenarios can be then simulated to make sure functional objectives of the system are met. 1D models provide the necessary level of accuracy without imposing extra computational cost in such virtual environments. As such, they are perfect candidates for model, hardware or software-in-the loop validation benches for controls. Performance of a heating, ventilation and air-conditioning (HVAC) system can be controlled through the settings of the components like mode door, blend door, recirculation door, blower, and the compressor.
Technical Paper

1D Simulation-Based Methodology for Automotive Grill Opening Area Optimization

2021-09-15
2021-28-0133
This paper discusses the methodology setup for grill opening area prediction at the early development phase of the product development lifecycle, using a commercially available 1D simulation tool- AMESIM. Representative under hood has been modeled using Grill, Condenser, Radiator, intercooler, fan, and engine components. Vehicle velocity is used as an input to derive the airflow passing through the grill and other under-hood components based on ram air coefficient, pressure drop through different components (Grill, Heat exchanger, Fan & Engine). This airflow is used to predict the top tank temperature of the radiator. Derived airflow is correlated with airflow obtained from CFD simulation. A balance has been achieved between cooling drag & fan power consumption at different grill opening areas for target top tank temperature. Top tank temperature has been predicted at two different extreme engine heat rejection operating points.
Technical Paper

2-Door Vehicle Body Local Force Evaluation with the IIHS, EuroNCAP, and LINCAP Side Impact Barriers

2004-03-08
2004-01-0333
Structure enhancement based on data monitored in a traditional side impact evaluation is primarily a trial and error exercise resulting in a large number of computer runs. This is because how the structure gets loaded and the degree of contribution of local structural components to resist the impact while absorbing energy during a side collision is not completely known. Developing real time complete load profiles on a body side during the time span of an impact is not an easy task and these loads cannot be calculated from that calculated at the barrier mounting plate. This paper highlights the load distribution, calculated by a procedure using computer aided engineering (CAE) tools, on a typical 2-door vehicle body side when struck by moving deformable barriers used in the insurance institute for highway safety (IIHS), EuroNCAP and LINCAP side impact evaluations.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyurethane Construction

1995-02-01
950048
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyurethane (PUR) plastic inner layer. Windshield impact tests were conducted using a linear impactor test facility. Principle among the findings was that the impact response of prototype PUR 2-ply windshields does not differ that significantly from that of baseline 3-ply HPR (High Penetration Resistance) windshields for the subcompact vehicle geometry tested. However, the impact responses of both PUR 2-ply and 3-ply HPR subcompact vehicle windshields were found to be highly variable. Average performance of either construction could thus be enhanced if ways could be found (and then implemented) to reduce this variability.
X