Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 10052
Event

2024-04-29
Event

2024-04-29
Event

2024-04-29
Event

2024-04-29
Event

2024-04-29
Event

2024-04-29
Event

2024-04-29
Event

2024-04-29
Event

2024-04-29
Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Technical Paper

0D-1D Coupling for an Integrated Fuel Economy Control Strategy for a Hybrid Electric Bus

2011-09-11
2011-24-0083
Hybrid electric vehicles (HEVs) are worldwide recognized as one of the best and most immediate opportunities to solve the problems of fuel consumption, pollutant emissions and fossil fuels depletion, thanks to the high reliability of engines and the high efficiencies of motors. Moreover, as transport policy is becoming day by day stricter all over the world, moving people or goods efficiently and cheaply is the goal that all the main automobile manufacturers are trying to reach. In this context, the municipalities are performing their own action plans for public transport and the efforts in realizing high efficiency hybrid electric buses, could be supported by the local policies. For these reasons, the authors intend to propose an efficient control strategy for a hybrid electric bus, with a series architecture for the power-train.
Technical Paper

1-D Model of Radial Turbocharger Turbine Calibrated by Experiments

2002-03-04
2002-01-0377
The 1-D model of a radial centripetal turbine was developed for engine simulation to generalize and extrapolate the results of experiments to high pressure ratio or off-design velocity ratio using calibrated tuning coefficients. The model concerns a compressible dissipative flow in a rotating channel. It considers both bladed or vaneless turbine stators and a twin-entry stator for exhaust pulse manifolds. The experiments were used to find values of all model parameters (outlet flow angles, all loss coefficients including an impeller incidence loss) by an original method using repeated regression analysis. The model is suitable for the prediction of a turbocharger turbine operation and its optimization in 1-D simulation codes.
Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Technical Paper

1-D Thermal Simulation and Experimental Validation of Li-Ion Battery Pack Liquid Cooling System

2023-09-14
2023-28-0012
The battery cooling system is one of the most critical parts for the safe and efficient operation of the Li-ion battery pack in EVs. Battery liquid cooling system is most commonly used. This paper represents a comprehensive study of the electric vehicle battery liquid cooling system design and performance using the 1D tool and experimental validation. The 1D model includes the battery thermal load, cooling system components, and different ambient conditions. The cooling system components are calibrated using the experimental performance data of the components. The 1D model is used to evaluate the effect of fan speed, ambient temperature, compressor speed, and coolant flow rate on the battery cooling system and to optimize the component sizing. The results are then experimentally validated in a climate chamber, and the simulation results show good agreement with experimental results. The study's findings provide a good understanding of the Li-ion liquid cooling system.
Technical Paper

1000 kW Sodium-Sulfur Battery Pilot Plant: Its Operation Experience at Tatsumi Test Facility

1992-08-03
929055
Since 1978, the Agency of Industrial Science and Technology (AIST) of MITI has promoted research and development of “Large-Scale Energy Conservation Technology” popularly known as the “Moonlight Project”. As the first step, “system technology tests” using improved lead acid batteries started at Kansai Electric's Tatsumi Electric Energy Storage System Test Plant on October 1, 1986. The results showed that this system can work not only as a load-leveling apparatus but also as a high-quality power source which can support the utility power system with its load frequency control and voltage regulation capabilities. As the second step of these R&D activities, a 1MW/8MWh sodium-sulfur battery pilot plant was constructed at the same Tatsumi site. On July 11, 1991, 1000 kW× 8H facility, the largest of its type in the world, was completed and started operation. This paper describes the construction experience and operation results of the pilot plant.
Technical Paper

12-Volt Vacuum Fluorescent Display Drive Circuitry for Electronically Tuned Radios

1986-03-01
860126
The trend towards battery voltage vacuum fluorescent displays continues the technological advances in design and construction of VFD's, as they are applied to the automobile environment. With the ever increasing use of electronic displays for electronically tuned radios (ETR's), compact disc (CD) players, and other entertainment systems, advances in battery voltage displays and their associated drive circuitry have become a necessity. With the inherent advantages of low voltage operation and high information density, VFD's will continue to dominate the automobile audio markets. This paper will discuss battery voltage displays, the basic circuitry necessary to operate a vacuum fluorescent display, and comment on the “off the shelf” controller and driver circuitry available.
Technical Paper

120VAC Power Inverters

1983-02-01
830131
Inverters are solid state devices which change DC to 120VAC electricity. They are sufficiently rugged and reliable to make them practical for use on utility vehicles for operating thumpers, tools, lights and induction motor loads. The SCR type rather than the transistor type inverter is generally required for inductive and reactive loads. Static inverters operate from battery input. They provide power without running an engine, but are limited by battery capacity so work best in intermittent load applications. Dynamic inverters operate from alternator input and will handle continuous loads to 7200 watts with truck engine running.
Technical Paper

125cc Small Engine Fuel Injection System with Low Emissions Solutions

2004-09-27
2004-32-0094
In many countries of the world, carburetor motorcycles are the major transportation system for people. The large volumes of these motorcycles contribute to high levels of urban emissions and this fact promotes the relevant emissions regulations to become more stringent. This paper presents an approach to satisfy various new emissions regulations such as Euro-III and Taiwan 4th generation emissions regulations by optimizing the 4-stroke PFI (Port Fuel Injection) engine management system (EMS) and after-treatment system.
Technical Paper

12V/14V to 36V/42V Automotive System Supply Voltage Change and the New Technologies

2002-11-19
2002-01-3557
This paper shows some aspects of the automotive voltage energy system level shift from 14 to 42 Volts. New features and prospective emissions/fuel economy requirements are creating electrical power needs in future automobiles, which today's conventional system cannot adequately supply at 14 Vdc (nominal, with a 12 Volt battery). It will be necessary to provide electric motors, DC/DC converters, inverters, battery management, and other electronic controls to meet higher voltage requirements. Suppliers must now include 42 Volt components and systems within their product range and make these new components as light, small, and cost efficient as possible. This paper is a compilation of several published works aiming to offer a synthesis to introduce this subject to the Brazilian Automotive Market.
Technical Paper

14/42V - Electrical Power Supply Systems Consequences for Electrical Interconnections and Switches

2000-08-21
2000-01-3055
This paper provides an overview about the consequences of a 14/42 V - Electrical Power Supply System for the Electrical Interconnection and Switching Technology. It presents design guidelines and solutions for connector systems including advanced applications like fuse and relay boxes and gives an overview of those existing connectors already suited for 42 V and even higher voltages. The problem of arcing due to the increased voltage is discussed for the case that mating and unmating under load has to be taken into consideration. Arcing also has a tremendous impact on the design of 42 V proof relays. Therefore, some basic results be presented along with proposals how these problems can be overcome by appropriate designs. Another part of the paper looks at the electrical power supply system itself. Here interconnection techniques for new battery systems are discussed. Finally, the chances for new technologies are highlighted.
X