Refine Your Search

Search Results

Technical Paper

2-D Imaging of Fuel Vapor Concentration in a Diesel Spray via Exciplex-Based Fluorescence Technique

1993-10-01
932652
To measure the fuel vapor concentration in an unsteady evaporating spray injected into nitrogen atmosphere, the exciplex-forming method, which produces spectrally separated fluorescence from the liquid and vapor phase, was applied in this study. Two experiments were conducted to investigate the qualitative and quantitative applicability of the technique in a high temperature and high pressure atmosphere during the fuel injection period. One is to examine the thermal decomposition of TMPD dopant at a high temperature and a high pressure nitrogen atmosphere during a short period of time. The other is to calibrate the relationship between fluorescence intensity and vapor concentration of TMPD at different vapor temperatures. And then, the qualitative measurement of fuel vapor concentration distributions in diesel sprays was made by applying the technique.
Technical Paper

A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion

1981-09-01
811004
As a basic tool for fundamental studies on combustion and heat transfer in diesel engines, a new rapid compression machine with a cylinder bore of 200 mm was developed which can realize in it a free diesel flame in a quiescent atmosphere, a diesel flame in a swirl, and a diesel flame impinging on the wall. The piston of this machine is driven by high pressure nitrogen, and its speed is controlled by a sophisticated hydraulic system. This paper describes the details of the mechanism and performances of the machine, and presents some examples of studies conducted with this machine.
Technical Paper

A Gas Sampling Study on the Formation Processes of Soot and NO in a DI Diesel Engine

1980-02-01
800254
The concentrations of soot, NO and the other combustion products were measured by incylinder gas sampling in a DI diesel engine. The effects of injection timing, swirl ratio, and combustion chamber geometry on the formation and emission processes of soot and NO were studied. The following results were obtained: (1) Soot is promptly formed in the flame during the early combustion period where the equivalence ratio in the flame is high over 1.0. Thereafter almost all the formed soot is swiftly burnd up by oxidation during the middle combustion period. This process mainly determines the exhaust soot concentration. (2) NO is formed in the flame during the early and middle combustion period where the flame temperature is high over 2000 K. The highest NO concentration is observed at the flame tip swept by the air swirl. Though the concentration of the formed NO decreases by dilusion it nearly constant during the later combustion period.
Technical Paper

A Numerical Simulation of Ignition Delay in Diesel Engines

1998-02-23
980501
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a simple quasi-steady spray model coupled with the Shell kinetics model at various operating conditions and validity of this model is assessed by a comparison with existing experimental data. The calculated results indicate that the competition between the heat absorption of fuel and the hot air entrainment determines the equivalence ratio of mixtures favorable for the ignition to occur in the shortest time.
Technical Paper

A Photographic and Thermodynamic Study of Diesel Combustion in a Rapid Compression Machine

1981-02-01
810259
A diesel spray and flame in a quiescent atmosphere were realized without interference with combustion chamber walls in a newly constructed rapid compression machine. High speed shadow photography and pressure measurement were employed to obtain data for calculating the amount of air entrainment into the the flame and spray. From a comparison of air entrainment between the flame and spray, it turned out that when ignition delay becomes longer air entrainment into flames is promoted by the thermal expansion of multi-points ignition sources in the central region of the spray.
Technical Paper

A Study of Fuel Injection Systems in Diesel Engines

1976-02-01
760551
In this study, the authors show their analytical model of the fuel injection system in a diesel engine, which is constructed to be as accurate but as simple as possible and to have good application in the development of new fuel injection systems. In the first part, the authors initially describe the model assumptions, classification of injection phenomena, and fundamental equations considering the compressibility, inertia and viscocity of hydraulics and the movements of valves and other components to improve the accuracy of the systems. Secondly, regarding the experimental constants and physical properties of the fuel, the authors show the method of selection they used to simplify the analytical model and to get good agreement as a result but without losing physical meanings.
Technical Paper

A Study on Ignition Delay of Diesel Fuel Spray via Numerical Simulation

2000-06-19
2000-01-1892
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a discrete droplet spray model (DDM) coupled with the Shell kinetics model at various operating conditions. Predicted results show that the fuel mixture injected at the start of injection, which travels along midway between the spray axis and the spray periphery, contributes heavily to the first ignition in a spray. The equivalence ratio and temperature of the first ignited mixture are kept nearly constant until the start of hot ignition. The temperature of the first ignited mixture is kept at a constant value of higher temperature than the thermodynamic equilibrium temperature of the mixture before the hot ignition starts. The equivalence ratio of the first ignited mixture is around 1.6 at initial gas temperatures between 750 K and 850 K.
Technical Paper

A Study on Precise Measurement of Diesel Fuel Injection Rate

1992-02-01
920630
An experimental evaluation of the reliability of the Zeuch's method was carried out. The following were derived: 1) cavitation limits the minimum back pressure available; 2) the injection rate measured by the Zeuch's method agrees with that by the W.Bosch's method; 3) the effect of dynamic pressure of the injected fuel jet has a negligible effect on the pressure sensor which is attached to the chamber wall; and 4) the high-frequency noise after the end of injection observed in the Zeuch's measurement can be effectively removed by either a low-pass filter or an inverse Fourier transform processing.
Technical Paper

A Study on Soot Formation and Oxidation in an Unsteady Spray Flame via Laser Induced Incandescence and Scattering Techniques

1995-10-01
952451
Two kinds of planar soot imaging techniques, laser induced incandescence (LII) and laser induced scattering (LIS) techniques were applied simultaneously to an unsteady free spray flame achieved in a rapid compression machine. An analysis of LII and LIS images yielded three kinds of qualitative images of soot concentration, size of soot particles, and number density of soot in the flame. These images revealed the fact that the soot is formed mainly in the center region of a flame resulting in an appearance of soot cloud with high number density and small particle size in this region, and then the soot size increases and the number density decreases while soot is conveyed downstream.
Technical Paper

A Study on Soot Formation in Unsteady Spray Flames via 2-D Soot Imaging

1992-02-01
920114
The formation and oxidation processes of soot particles in unsteady spray flames were investigated in a quiescent atmosphere using 2-D laser sheet visualization. The mid-plane of a flame was illuminated twice during a short time-interval by a laser sheet from a double-pulsed YAG laser. An image pair of the scattered light from soot particles was taken by two intensified gated cameras in succession. The velocity vectors of soot clouds at various location in the sooting region were estimated using the spatial correlation between the image pair. The results of temporal and spatial variation of velocity and scattering intensity in the evolving soot clusters made it clear that soot is mainly formed in the periphery of the flame tip where the air entrainment is less and flame temperature favors soot formation.
Technical Paper

Development of a New Measurement Tool for Fuel Injection Rate in Diesel Engines

1989-02-01
890317
A new instrument for the measurement of fuel injection rate in diesel engines was developed. The instrument, whose measurement principle is based on the Zeuch's method, i.e., the constant volume method, incorporates a device for the precise calibration of the volume elasticity of the fuel. This instrument was proved experimentally to have a capability of measuring injection rate with ± 1% accuracy up to an injection pump rotating speed of 2500rpm.
Technical Paper

Development of a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1995-10-01
952514
A rapid compression-expansion machine was developed, which can simulate intake, compression, expansion and exhaust strokes in a single Diesel cycle by an electrically controlled and hydraulically actuated driving system. The whole system which is composed of a hydraulic actuator, fuel injector and a valve driving device, is sequentially controlled by a micro-computer. The machine features; 1) accurate control of piston position at TDC, 2) no effect of lubricant on HC emission due to the use of dry piston rings; 3) independent control of local wall temperature; and 4) high power output to drive heavy piston at high frequency. The single cycle operation permits Diesel combustion experiments under a wide range of operating conditions and easy access of optical diagnostics with minimized amount of test fuel. The performance test showed that the machine can drive a DI Diesel type piston with a 100 mm bore at a maximum frequency of 16.7 Hz at a maximum compression pressure of 15 MPa.
Technical Paper

Development of a Rapid Compression-Expansion Machine to Simulate Combustion in Diesel Engines

1988-10-01
881640
A rapid compression-expansion machine which can simulate the combustion processes in diesel engines is developed. The configuration of the combustion chamber is a 100 mm bore and a 90 mm stroke, and the compression ratio is 15. The piston is driven by an electro-hydraulic system with a thrust of 90 kN and the maximum frequency of 20 Hz. The whole system composed of a hydraulic actuator, a fuel injection system, and a valve driving unit is sequentially controlled by a computer. The reproducibility of the stop position of the piston at the end of compression is achieved with an accuracy of ±0.1 mm by employing a hydraulic-mechanical brake mechanism. The experiment shows that the combustion in the expansion stroke is achieved, and that the combustion characteristics such as the rate of heat release and indicated output as well as the exhaust emission can be measured.
Technical Paper

Effects of Flame Motion and Temperature on Local Wall Heat Transfer in a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1992-10-01
922208
Local heat flux from the flame to the combustion chamber wall, q̇, was measured the wall surfaces of a rapid compression-expansion machine which can simulate diesel combustion. Temperature of the flame zone, T1, was calculated by a thermodynamic two-zone model using measured values of cylinder pressure and flame volume. A local heat transfer coefficient was proposed which is defined as q̇/(T1-Tw). Experiments showed that the local heat transfer coefficient depends slightly on the temperature difference, T1-Tw, but depends significantly on the velocity of the flame which contacts the wall surface.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

Heat Transfer From Impinging Diesel Flames to the Combustion Chamber Wall

1997-02-24
970896
The local heat fluxes from impinging combusting and evaporating diesel sprays to the wall of a square combustion chamber were measured in a rapid compression machine. It was revealed that the ratio of local heat flux between the combusting and evaporating spray, q̇c/q̇e, is of the same order of magnitude as (Tc-Tw)/(Te-Tw) and its values estimated by a two-zone model agree roughly with the measured ones. The time-mean local heat flux during the spray impingement was found to be approximately proportional to the 0.8th power of the injection velocity and the heat-transfer phenomenon depends largely on whether the ignition starts before or after the impingement.
Technical Paper

High Temperature Diesel Combustion in a Rapid Compression-Expansion Machine

1991-09-01
911845
According to previous papers on the combustion process in LHR diesel engines the combustion seems to deteriorate in LHR diesel engines. However it has been unclear whether this was caused by the high temperature gas or high temperature combustion chamber walls. This study was intended to investigate the effect of gas temperature on the rate of heat release through the heat release analysis and other measurements using a rapid compression-expansion machine. Experiments conducted at high gas temperatures which was achieved by the employment of oxygen-argon-helium mixture made it clear that the combustion at a high gas temperature condition deteriorated actually and this was probably due to the poorer mixing rate because of the increase in gas viscosity at a high gas temperature condition.
Technical Paper

Ignition, Combustion and Emissions in a DI Diesel Engine Equipped with a Micro-Hole Nozzle

1996-02-01
960321
In an attempt to achieve lean combustion in Diesel engines which has a potential for simultaneous reduction in no and soot, the authors developed a micro-hole nozzle which has orifices with a diameter as small as 0.06 mm. Combustion tests were carried out using a rapid compression-expansion machine which has a DI Diesel type combustion chamber equipped with the micro-hole nozzle. A comparison with the result of a conventional nozzle experiment revealed that the ignition delay was shortened by 30 %, and in spite of that, both peaks of initial premixed combustion and diffusion combustion increased significantly. The combustion in the case of the micro-hole nozzle experiment was accompanied with a decrease in soot emission, whereas an increase in NO emission.
Technical Paper

Measurement of the Rate of Multiple Fuel Injection with Diesel Fuel and DME

2001-03-05
2001-01-0527
The accuracy of the injection rate meter based on W. Zeuch's method in the measurement of multiple injection rate and amount was calibrated using a small cam driven piston that is driven by an electric motor. For the pre- or early-injection, a sensor with a high sensitivity can be applied to measure the small pressure increase due to the small injection amount. In case of the multiple injection that has the post and/or late injection, a pressure sensor with a low sensitivity must cover not only the large pressure increase due to the main injection but also the small pressure increase due to the post and/or late injection because the output of the high sensitivity sensor is saturated after the main injection. So the linearity of the low sensitivity pressure sensor was calibrated with the cam driven piston prior to the experiment with the actual injection system.
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
X