Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

An Experimental Study of Combustion and Fluid Flow in Diesel Engines

1987-11-01
872060
Combustion zone (flame) propagation and flow velocities are measured using optical measurement techniques in a single-cylinder direct injected diesel engine. Combustion and, hence, flame propagation is detected by optical fibers and flow velocities have been measured by a new single-color, 2 dimensional Laser Doppler Velocimeter (LDV). Flame propagation and flow velocities could not be measured simultaneously. Consequently, pressure traces which were recorded during each measurement served as a criterion for selecting similar combustion cycles from flame and flow velocity measurements. The operational speed of the engine was 1100 rpm and the power cylinder was configured with a combustion bowl in the piston. For the purpose of the tests, the intake swirl number was either 1.8 or 4.2, the latter corresponding to the application of a shrouded inlet valve. It has been shown that variation of several significant engine parameters influences both combustion and fluid flow history.
Technical Paper

Analysis of Mixture Conditions Close to Spark Plug Location using a Time Resolved Gas Sampling Valve

1998-10-19
982473
The quality of air-/fuel-mixture is of prime importance for cycle fluctuations of combustion. Investigations of mixture formation and conditions in SI engines have been subject of intensive research since many years. The scope of this work was to investigate crank angle resolved determination of qualitative and quantitative mixture conditions inside the combustion chamber in dependence on various engine operating conditions. For this experimental investigation a time resolved Gas Sampling Valve (GSV) was combined with a flame ionisation detector (FID), a CO2-analyzer and a mass spectrometer. The GSV also enables the determination of residual gas concentration. Measurements on a DI gasoline engine show influences of air-/fuel-mixture in dependence on various engine operating conditions when the engine runs in charge stratification mode. Moreover, experimental results of local mixture composi-tion are compared with fuel distribution, calculated from CFD-codes.
Technical Paper

Application of Different Cylinder Pressure Based Knock Detection Methods in Spark Ignition Engines

2002-05-06
2002-01-1668
The primary objective of this paper is to compare different methods of knock detection based on cylinder pressure data, with special regard to identifying knocking cycles and detecting the onset of knock. These investigations have resulted in the development of a new knock detection method based on high-pass filtered heat release. Different signal characteristics have been considered. The model has been developed on the basis of experimental data for a four-valve production engine, and verified over a wide range of operating conditions. For the purpose of thermodynamic investigations, the new knock detection algorithm allows the determination of the engine operating points that correspond to the knock limit, and their mean crank angle of knock onset. The thermodynamic properties of the end gas at knock onset have been discussed using a zero-dimensional two-zone model.
Technical Paper

Combustion in Spark Ignition Engines with Direct Injection

2000-03-06
2000-01-0649
Reduction of fuel economy and exhaust emission at spark ignition engines with direct injection can be achieved by investigation and optimization of mixture preparation and combustion process. In this paper principle strategies of mixture preparation and combustion are discussed. Phenomena of combustion like flame radiation, flame propagation and knocking combustion are represented for different mixture preparation strategies. For detection of combustion phenomena optical fiber technique as well as new visualization device with an endoscope have been used. From the view of present knowledge, obtained with investigation of spark ignition engines with direct injection, it is an important target for future development of GDI engine technology to force activities of combustion process investigation at different mixture preparation strategies.
Technical Paper

Detection of Flame Propagation During Knocking Combustion by Optical Fiber Diagnostics

1986-10-01
861532
This paper presents results on the phenomenon of knocking (detonation) during combustion in a single-cylinder spark ignition engine. The investigation of knocking combustion was made possible by observing in-cylinder flame propagation with a measuring technique that uses optical fibers coupled with photo-multipliers. The results indicate that knocking combustion appears to occur as a result of autoignition and/or acceleration of the flame front in the squish crevices. At high knock intensities, the flame front velocity can be supersonic. The occurrence of knock damage does not necessarily correspond with location of knock onset. Rather, knock damage is observed at a location where pressure waves, induced by detonation, are reflected and accompanied by pressure peaks.
Technical Paper

Detection of Knocking Combustion Using Simultaneously High-Speed Schlieren Cinematography and Multi Optical Fiber Technique

1991-10-01
912312
Flame propagation as well as the special role of detonation waves during knocking combustion are still unsolved questions. In order to examine these phenomena during cyclic resolved knocking combustion, high-speed schlieren photography and multi optical fiber technique were applied simultaneously. The pictures were taken at a rate of 200 000 frames per second, whereas the flame radiation signals of the knocking combustion, detected with the multi optical fiber technique at 49 measuring points, were recorded with a sampling frequency of 500 kHz. The exact correlation between schlieren photography and optical fiber technique shows that knocking combustion is initiated by self ignitions in the unburned regions, clearly separated from the spark ignited flame. The complete autoignition (i.e. knocking combustion) proceeds in two stages thus showing distinct prereactions.
Technical Paper

Determination of Residual Gas Fraction in IC Engines

2003-10-27
2003-01-3148
The objective of this study is to achieve a general understanding of gas exchange phenomena to develop a model for predicting the residual gas content. The knowledge of the cylinder-charge composition is important for the thermodynamic analysis of the combustion process of IC engines. Therefore, the amount of fresh air and fuel as well as the residual gas fraction has to be known. The residual gas mass strongly depends on valve train parameters and operating conditions. In this study, the residual gas fraction has been determined by using in-cylinder gas sampling from the combustion chamber of a 4-stroke SI engine. The gas sampling valve was flush-mounted to the combustion chamber walls. The gas samples were taken after the gas exchange and analysed for its CO2 concentration. In combination with the analysis of the exhaust gas composition, the calculation of the residual gas fraction is possible.
Technical Paper

Influence of an Adjustable Tumble-System on In-Cylinder Air Motion and Stratification in a Gasoline Direct Injection Engine

2002-05-06
2002-01-1645
To meet future emission standards with gasoline direct injection engines it is important to have a reliable process robustness during stratified charge operation. Especially engines with a wide spacing arrangement of fuel injector and spark plug which operate with an air-guided concept are very sensitive concerning misfire operation caused by cyclic variations of the mixture formation and transport. Primarily the turbulent in-cylinder gas motion and the interaction with the fuel injection indicate these fluctuations. To reduce these cycle-to-cycle variations and to generate a steady flow behavior an adjustable air-guiding system was developed and attached to the inlet port of a single-cylinder DI engine. The following examinations show that the air-guiding system can lead to a significant reduction of the cycle-to-cycle-variation of the in-cylinder air flow. As a result of these improvements, the deviation of imep in the fired engine decreases obviously.
Technical Paper

Investigation into the Applicability of an Optical Fiber Sensor for Knock Detection and Knock Control System

1992-10-01
922370
A new fiber optic sensor has been used to detect knocking combustion. With this sensor it is possible to detect high frequency signals which are free from electrical and mechanical disturbance. By using the maximum signal rise of the detected optical signals for each combustion cycle, it is possible to clearly seperate knocking and non-knocking cycles. The detected maximum signal rise was used in a preliminary test as the input of a knock control system.
Technical Paper

Investigation of Cycle-to-Cycle Variations of In-Cylinder Processes in Gasoline Direct Injection Engines Operating With Variable Tumble Systems

2004-03-08
2004-01-0044
To operate gasoline direct injection engines at part load and in stratified mode the mixture formation has to fulfil several requirements. The complexity of this process requires - regarding a suitable mixture transportation and vaporisation of the fuel - an adjusted design of the combustion chamber and the intake ports to reliably place an ignitable mixture at ignition timing near the spark plug at any speed and load. Due to the inhomogeneous mixture distribution during stratified operation, the first combustion period is very sensitive to cycle-to-cycle variations. A reproducible mixture movement with high kinetic energy is necessary for stable engine operation with low fluctuations in the combustion process. Because of the high relevance of these facts, the effects of an adjustable air guiding system in the inlet manifold on in-cylinder flow, ignition and combustion using optical measurement techniques were investigated.
Journal Article

Investigation of a New Injection Strategy for Simultaneous Soot and NOx Reduction in a Diesel Engine with Direct Injection

2008-06-23
2008-01-1790
An important source for soot formation during the combustion of diesel engines with direct injection is the interaction of liquid fuel or a very rich air/fuel-mixture with the flame. This effect appears especially in modern direct injection engines where the injection is often split in a pre- and a main injection due to noise reasons. After the ignition of the pre-injected fuel a part of the main injection can interact with the flame still in liquid phase as the fuel is injected straight towards the already burning cylinder areas. This leads to high amounts of soot. The injection strategy for this experimental study overcomes this problem by separating the injections spatially and therefore on the one hand reduces the soot formation during the early stages of the combustion and on the other hand increases the soot oxidation later during the combustion. In particular an injection configuration is used which gives the degree of freedom to modify the injection in the described manner.
Journal Article

Investigations on Supercharging Stratified Part Load in a Spray-Guided DI SI Engine

2008-04-14
2008-01-0143
Given the fact that, in an endeavor to achieve the goals of engineering for a trade-off between cleaning up exhaust emissions and maximizing fuel economy, two main paths are being followed in advancing and optimizing SI-engine operating strategy in the upper part-load range. On the one hand, homogenization and operation in the compression ignition mode seem to offer a promising means of minimizing NOx emission by keeping the combustion temperature below the formation borderline and accepting a high cylinder-pressure gradient to obtain benefits in fuel economy. On the other hand, there are ambitions to widen the range of stratified operation using a supercharger or turbocharger. This way, efficiency of the engine cycle can be improved by operating at a higher global air-fuel ratio and, with this, a higher polytropic exponent, thereby taking the efficiency chain to a higher level.
Technical Paper

Investigations on the Start-Up Process of a DISI Engine

2007-10-29
2007-01-4012
Understanding the processes regarding fuel injection, vaporization and combustion during cold start is very important in order to reduce the HC-emission of gasoline engines. To learn more about the cold engine start-up process an experimental study on a 4.2 liter eight cylinder engine with gasoline direct injection was carried out. Parameters such as injection and ignition timing as well as the injection quantity were varied to get information about their effect on the combustion process and speed rise. Especially during engine run-up it is important to investigate every subsequent combustion. Therefore the engine was equipped with high pressure indication in each cylinder. The transient pressures and the instantaneous crankshaft speed of the engine were recorded by means of an indication system. Additionally a fast response flame ionization detector (FRFID) was applied to measure the transient HC-emissions during the first cycles of the engine.
Technical Paper

Knock Behavior of SI-Engines: Thermodynamic Analysis of Knock Onset Locations and Knock Intensities

2006-04-03
2006-01-0225
A general definition and an index for the assessment of different engine knock behavior have been developed. The knock onset locations have been determined by piezoresistive pressure actuators and optical fiber probes in full load engine operation mode. The thermodynamic conditions at the knock onset locations have been quantified by CFD-calculations. Therefore the local fuel concentration, mixture temperature and residual gas concentration have been considered. These calculated thermodynamic conditions were further used to calculate the necessary volume of an exothermal center for the generation of the maximal measured pressure amplitudes.
Technical Paper

Measurement of the Equivalence Ratio in the Spark Gap Region of a Gasoline Direct Injection Engine With Spark Emission Spectroscopy and Tracer-LIF

2004-06-08
2004-01-1916
The complexity of the mixture formation in direct injection engines requires - according to a suitable mixture transportation and vaporization of the fuel - detailed knowledge of the in-cylinder processes to reliably place an ignitable mixture at ignition timing near the spark plug for any speed and load. Two different optical measurement techniques were adapted to a single cylinder engine and the spray propagation was observed from the start of injection until ignition. 3-pentanone tracer-LIF signals (laser-induced fluorescence) and CN spark emission signals were detected simultaneously in order to get information about the local equivalence ratio at the spark plug and compare the two methods. While there is a good correlation for homogeneous operating conditions of the engine, the results diverge in the stratified mode.
Technical Paper

Mixture Formation and Combustion in a Spark Ignition Engine with Direct Fuel Injection

1992-02-01
920521
This paper presents investigations on the combustion process in a single cylinder SI engine with direct injection. Different nozzle types are examined i.e. hollow cone nozzles and hole type nozzles both with different geometry of the injected spray. These nozzle types have been compared in view of their suitability of creating a homogeneous as well as a stratified mixture in the combustion chamber. To create a homogenous mixture, the fuel was injected during the intake stroke. In order to examine the homogeneity of the mixture in the case of direct injection, the engine was driven with mixture formation generated through intake port injection. The comparison of the direct injection method with the intake port injection for homogenous mixture formation has shown only small differences in engine behavior. To create a stratified mixture in the combustion chamber, the fuel was injected at the end of the compression stroke.
Technical Paper

Optical Investigation of Knocking Location on S.I.-Engines with Direct-Injection

2000-03-06
2000-01-0252
Determining locations at which knocking events appear frequently is a very important tool for optimizing the efficiency of S.I.-Engines. The knock behavior of two Direct-Injection Engines (one with wall guided fuel delivery - Mitsubishi GDI-engine - and a single-cylinder test engine with narrow arrangement of spark plug and injector) was tested and the location of appearing knocking was detected by the use of optical fiber technique. The optical investigations were conducted using a spark plug equipped with 8 optical sensors evenly distributed in a ring on the ground electrode of the standard spark plug. The intensity of flame radiation in the observing area of the optical sensors were measured. As knocking combustion produces pressure waves exciting gas oscillations, each compression of residual exhaust gas causes a steep increase of the measured flame intensity curve.
Technical Paper

Optical Investigations of a Gasoline Direct Injection Engine

1999-10-25
1999-01-3688
In this paper optical investigations of a gasoline direct injection engine with narrow spacing arrangement of spark plug and injector are presented. For the combustion analysis spectroscopy techniques based on the fiber technique are used. With this measurement technique information about soot formation and temperature progression in the combustion chamber is obtained. Furthermore a validation of numerical simulation of the stratified combustion with data obtained experimentally, is performed and discussed.
Technical Paper

Spatial Flame Propagation and Flame Quenching During Combustion in Internal Combustion Engines

1984-01-01
845000
Knowledge of flame propagation enables a more detailed description of the combustion processes as well as assessing the influences of engine operating conditions and design parameters, particularly in view of efficiency improvements and pollutant reduction. Flame propagation in a single-cylinder spark-ignition engine is studied by means of a measuring technique using lightconductors coupled with photo-multipliers. The propagation process is monitored through a large number of optical probes arranged in a matrix in the combustion chamber. The spatial flame contour, the flame volume, and the flame front velocity as a function of time are furnished from these measurements. The investigations show the formation of quench zones ("flame quenching") not penetrated by the flame directly above the piston towards the end of the expansion phase at extremely lean operating conditions.
Technical Paper

Time Resolved Investigation of Unsteady Flow Inside Inlet Manifolds and Characterization of Inlet Flow Behavior

1997-10-01
972828
The loss of momentum of the gas-core inside inlet manifolds of four-stroke engines is characterized by loss coefficients. Usually these coefficients are obtained by experimental investigations of the flow through cylinder heads under steady-state conditions. The dynamic behavior of the gas motion under real conditions due to acceleration and vibration of the gas-core as well as the influence of the gas motion due to the exhaust can not be described by these coefficients. Therefore a basic investigation of the unsteady flow under real engine conditions has been performed. The aim was to develop a simple method to characterize the inlet flow behavior under real conditions and to define a dynamic loss coefficient. The mass flow rate was determined by time resolved pressure data inside the suction pipe and a simple numerical calculation method considering unsteady flow conditions. The verification of calculated flow velocities was performed by using Particle-Image-Velocimetry.
X