Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

Contribution of Liquid Fuel to Hydrocarbon Emissions in Spark Ignition Engines

2001-09-24
2001-01-3587
The purpose of this work was to develop an understanding of how liquid fuel transported into the cylinder of a port-fuel-injected gasoline-fueled SI engine contributes to hydrocarbon (HC) emissions. To simulate the liquid fuel flow from the valve seat region into the cylinder, a specially designed fuel probe was developed and used to inject controlled amounts of liquid fuel onto the port wall close to the valve seat. By operating the engine on pre-vaporized Indolene, and injecting a small amount of liquid fuel close to the valve seat while the intake valve was open, we examined the effects of liquid fuel entering the cylinder at different circumferential locations around the valve seat. Similar experiments were also carried out with closed valve injection of liquid fuel at the valve seat to assess the effects of residual blowback, and of evaporation from the intake valve and port surfaces.
Technical Paper

Design and Demonstration of a Spark Ignition Engine Operating in a Stratified-EGR Mode

1998-02-23
980122
This paper describes the development of a spark ignition engine operating in a stratified-EGR mode at part load. The concept is to reduce the pumping loss with high levels of EGR while maintaining stable combustion via charge stratification. Since the engine operates stoichiometrically, the ability to control NOx emissions by the three-way catalyst is retained. The configuration of introducing the stoichiometric fresh mixture to the center portion of the combustion chamber with the EGR gas on the two sides is visualized in a transparent engine using planar laser-induced fluorescence (PLIF) and Mie scattering. Visualization results showed that the stratification between air/fuel mixture and EGR gas was relatively well established during the intake stroke. There was, however, significant mixing in the late part of the compression stroke.
Journal Article

EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation

2012-04-16
2012-01-0707
The effects of cooled exhaust gas recirculation (EGR) on a boosted direct-injection (DI) spark ignition (SI) engine operating at stoichiometric equivalence ratio, gross indicated mean effective pressure of 14-18 bar, and speed of 1500-2500 rpm, are studied under constant fuel condition at each operating point. In the presence of EGR, burn durations are longer and combustion is more retard. At the same combustion phasing, the indicated specific fuel consumption improves because of a decrease in heat loss and an increase in the specific heat ratio. The knock limited spark advance increases substantially with EGR. This increase is due partly to a slower combustion which is equivalent to a spark retard, as manifested by a retarded value of the 50% burn point (CA50), and due partly to a slower ignition chemistry of the diluted charge, as manifested by the knock limited spark advance to beyond the value offered by the retarded CA50.
Technical Paper

Effects of Fuel Injection Strategy on HC Emissions in a Port-Fuel-Injection Engine During Fast Idle

2006-10-16
2006-01-3400
The interaction of intake port gas flow with the fuel spray in a port-fuel-injection engine is studied to see whether there are opportunities to facilitate the mixture preparation process and to improve the HC emissions through this interaction. The operating regime of interest is the fast idle period in a cold start. For single pulse injection, the HC emissions were not sensitive to injection details for closed-valve injection; emissions increased with open-valve injection. Then a split injection strategy was used in which the fuel was divided into two pulses. The first pulse was delivered during valve-closed; the second pulse was injected in the back flow period. Under cold-valve conditions, a small benefit (compared to close valve injection) was obtained with a second pulse fuel of 25%: 6% decrease in Specific HC emissions and 4.5% increase in the fuel delivery fraction.
Technical Paper

Effects of Highly-Heated Fuel on Diesel Combustion

1985-02-01
850088
The effects of highly heated fuel on diesel combustion were studied experimentally in a rapid compression machine. A pure fuel, dodecane, heated up to and beyond its critical temperature, was injected into a diesel combustion chamber with the air charge at a compression ratio of 18.2 to 1. The ignition delay was found to decrease with the increase of fuel temperature. The delay decreased to almost zero (within the limit of the accuracy of the instrumentation) at fuel temperatures above 600K. This decrease of delay was explained in terms of a thermal ignition model. For the short ignition delay combustions, the premixed burning phase could not be detected from the heat release data. The mixing controlled burning phases of the heated and unheated fuels however, were not much different; in particular, there was no rapid mixing phenomenon when the fuel temperature was above critical.
Technical Paper

Fuel Effects on HCCI Operation in a Spark Assisted Direct Injection Gasoline Engine

2011-08-30
2011-01-1763
The fuel effects on HCCI operation in a spark assisted direct injection gasoline engine are assessed. The low load limit has been extended with a pilot fuel injection during the negative valve overlap (NVO) period. The fuel matrix consists of hydrocarbon fuels and various ethanol blends and a butanol blend, plus fuels with added ignition improvers. The hydrocarbon fuels and the butanol blend do not significantly alter the high or the low limits of operation. The HCCI operation appears to be controlled more by the thermal environment than by the fuel properties. For E85, the engine behavior depends on the extent that the heat release from the pilot injected fuel in the NVO period compensates for the evaporative cooling of the fuel.
Technical Paper

Heat Transfer Characteristics of Impinging Diesel Sprays

1989-02-01
890439
The heat transfer characteristics of impinging diesel sprays were studied in a Rapid Compression Machine. The temporal and spatial distributions of the heat transfer around the impingement point -were measured by an array of high frequency response surface thermocouples. Simultaneously, the flow field of the combusting spray was photographed with high speed movie through the transparent head of the apparatus. The results for the auto-ignited fuel sprays were compared to those of non-combusting sprays which were carried out in nitrogen. The values of the heat flux from the combusting sprays were found to be substantially different from those of the non-combusting sprays. The difference was attribute to the radiative heat transfer and the combustion generated bulk, motion and small scale turbulence.
Technical Paper

Ignition Delay Correlation for Engine Operating with Lean and with Rich Fuel-Air Mixtures

2016-04-05
2016-01-0699
An ignition delay correlation encompassing the effects of temperature, pressure, residual gas, EGR, and lambda (on both the rich and lean sides) has been developed. The procedure uses the individual knocking cycle data from a boosted direct injection SI engine (GM LNF) operating at 1250 to 2000 rpm, 8-14 bar GIMEP, EGR of 0 to 12.5%, and lambda of 0.8 to 1.3 with a certification fuel (Haltermann 437, with RON=96.6 and MON=88.5). An algorithm has been devised to identify the knock point on individual pressure traces so that the large data set (of some thirty three thousand cycles) could be processed automatically. For lean and for rich operations, the role of the excess fuel, air, and recycled gas (which has excess air in the lean case, and hydrogen and carbon monoxide in the rich case) may be treated effectively as diluents in the ignition delay expression.
Technical Paper

Intake Port Phenomena in a Spark-Ignition Engine at Part Load

1991-10-01
912401
The flow and heat transfer phenomena in the intake port of a spark ignition engine with port fuel injection play a significant role in the mixture preparation process, especially at part load. The backflow of the hot burned gas from the cylinder into the intake port when the intake valve is opened breaks up any liquid film around the inlet valve, influences gas and wall temperatures, and has a major effect on the fuel vaporization process. The backflow of in-cylinder mixture with its residual component during the compression stroke prior to inlet valve closing fills part of the port with gas at higher than fresh mixture temperature. To quantify these phenomena, time-resolved measurements of the hydrocarbon concentration profile along the center-line of the intake port were made with a fast-response flame ionization detector, and of the gas temperature with a fine wire resistance thermometer, in a single-cylinder engine running with premixed propane/air mixture.
Technical Paper

Load Control for an HCCI Engine

2005-04-11
2005-01-0150
Homogeneous-Charge-Compression-Ignition (HCCI) engine operation in a vehicle drive cycle is a very dynamic process. In this paper, a controller is devised on the premise that the vehicle is operating under Drive-By-Wire so that the driver commands the engine torque output according to the perceived vehicle speed. Thus a load-following controller is appropriate. Such a controller was developed for a single cylinder engine with electromagnetic variable valve timing control (also known as Controlled-Auto-Ignition (CAI) operation). Under open-loop operation within the CAI regime, the results indicated that the engine response was bipolar in nature: (a) the engine either responded quasi-statically to the open-loop control, or (b) the CAI combustion failed. The latter happened in a load increase process in which the per-cycle increment was too high.
Technical Paper

Managing SI/HCCI Dual-Mode Engine Operation

2005-04-11
2005-01-0162
Gasoline HCCI engine has the potential of providing better fuel economy and emissions characteristics than the current SI engines. However, management of HCCI operation for a vehicle is a challenging task. In this paper, the issues of mode transitions between the Spark Ignition and HCCI regimes, and the dynamic nature of the load trajectory within the HCCI regime are considered. Then the phenomena encountered in these operations are illustrated by the data from a single-cylinder engine with electromagnetic-variable-valve timing control. Mode transitions from the SI to HCCI regime may be categorized as robust and non-robust. In a robust transition, every intended HCCI cycle is successful. In a non-robust transition, one or more intended HCCI cycles misfire, although the cycles progress to a satisfactory HCCI operating point in steady state. (The spark ignition was kept on so that the engine could recover from a misfired cycle.)
Technical Paper

Mixture Preparation and Hydrocarbon Emissions Behaviors in the First Cycle of SI Engine Cranking

2002-10-21
2002-01-2805
The mixture preparation and hydrocarbon (HC) emissions behaviors for a single-cylinder port-fuel-injection SI engine were examined in an engine/dynamometer set up that simulated the first cycle of cranking. The engine was motored continuously at a fixed low speed with the ignition on, and fuel was injected every 8 cycles. Unlike the real engine cranking process, the set up provided a well controlled and repeatable environment to study the cranking process. The parameters were the Engine Coolant Temperature (ECT), speed, and the fuel injection pulse width. The in-cylinder and exhaust HC were measured simultaneously with two Fast-response Flame Ionization Detectors. A large amount of injected fuel (an order of magnitude larger than the normal amount that would produce a stoichiometric mixture in a warm-up engine) was required to form a combustible mixture at low temperatures.
Technical Paper

On HCCI Engine Knock

2007-07-23
2007-01-1858
Knock in a HCCI engine was examined by comparing subjective evaluation, recorded sound radiation from the engine, and cylinder pressure. Because HCCI combustion involved simultaneous heat release in a spatially large region, substantial oscillations were often found in the pressure signal. The time development of the audible signal within a knock cycle was different from that of the pressure trace. Thus the audible signal was not the attenuated transmission of the cylinder pressure oscillation but the sound radiation from the engine structure vibration excited by the initial few cycles of pressure oscillation. A practical knock limited maximum load point for the specific 2.3 L I4 engine under test (and arguably for engines of similar size and geometry) was defined at when the maximum rate of cycle-averaged pressure rise reached 5 MPa/ms.
Journal Article

On the Nature of Particulate Emissions from DISI Engines at Cold-Fast-Idle

2014-04-01
2014-01-1368
Particulate emissions from a production gasoline direct injection spark ignition engine were studied under a typical cold-fast-idle condition (1200 rpm, 2 bar NIMEP). The particle number (PN) density in the 22 to 365 nm range was measured as a function of the injection timing with single pulse injection and with split injection. Very low PN emissions were observed when injection took place in the mid intake stroke because of the fast fuel evaporation and mixing processes which were facilitated by the high turbulent kinetic energy created by the intake charge motion. Under these conditions, substantial liquid fuel film formation on the combustion chamber surfaces was avoided. PN emissions increased when injection took place in the compression stroke, and increased substantially when the fuel spray hit the piston.
Technical Paper

Performance Assessment of Extended Stroke Spark Ignition Engine

2018-04-03
2018-01-0893
The performance of an extended stroke spark ignition engine has been assessed by cycle simulation. The base engine is a modern turbo-charged 4-stroke passenger car spark-ignition engine with 10:1 compression ratio. A complex crank mechanism is used so that the intake stroke remains the same while the expansion-to-intake stroke ratio (SR) is varied by changing the crank geometry. The study is limited to the thermodynamic aspect of the extended stroke; the changes in friction, combustion characteristic, and other factors are not included. When the combustion is not knock limited, an efficiency gain of more than 10 percent is obtained for SR = 1.5. At low load, however, there is an efficiency lost due to over-expansion. At the same NIMEP, the extended stroke renders the engine more resistant to knock. At SR of 1.8, the engine is free from knock up to 14 bar NIMEP at 2000 rpm. Under knocking condition, the required spark retard to prevent knocking is less with the extended stroke.
Journal Article

Primary Reference Fuel Behavior in a HCCI Engine near the Low-Load Limit

2008-06-23
2008-01-1667
In a previous study, a wide range of gasolines with RON∼90 were tested in a single cylinder engine operated in HCCI mode using negative valve overlap, and all were found to have very similar behavior near the low-load limit. Here we broaden the range of gasolines to include PRF90 and PRF60. At high engine speed, both PRF60 and PRF90 behave similarly to all the other gasolines tested. However, at 1000 RPM, PRF90 is very different from all the other gasolines: it ignites very late, and the engine cannot be operated at low load. Simulations using a popular fuel chemistry model cannot distinguish PRF60 and PRF90 under these conditions. However, a new fuel chemistry model correctly shows the onset of fuel sensitivity at low engine speed. Sensitivity analyses indicate the low-load limit at low engine speed strongly depend on both the chemistry parameters and on the heat-transfer parameters.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

The Nature of Heat Release in Gasoline PPCI Engines

2014-04-01
2014-01-1295
The heat release characteristics in terms of the maximum pressure rise rate (MPRR) and combustion phasing in a partially premixed compression ignition (PPCI) engine are studied using a calibration gasoline. Early port fuel injection provides a nearly homogeneous charge, into which a secondary fuel pulse is added via direct injection (DI) to provide stratification which is affected by the timing of the start of injection (SOI). As the SOI the DI fuel is retarded from early compression, MPRR first decreases, then increases substantially, and decreases again. The MPRR correlates mostly with the combustion phasing. The SOI timing plays an indirect role. The observation is explained by a bulk heat release process of which the rate increases with temperature rather than by a sequential ignition process. Observations from compression ignition of representative homogeneous charges in a Rapid Compression Machine support this explanation.
Journal Article

Understanding Knock Metric for Controlled Auto-Ignition Engines

2013-04-08
2013-01-1658
The knock metric for controlled auto-ignition (CAI) engines is assessed by considering the physical processes that establish the pressure wave that contributes to the acoustic radiation of the engine, and by analyzing pressure data from a CAI engine. Data sets from the engine operating with port fuel injection, early direct injection and late direct injection are used to monitor the effect of mixture composition stratification. Thermodynamic analysis shows that the local pressure rise produced by heat release has to be discounted by the work spent in acoustic expansion against the ambient pressure to properly predict the pressure wave amplitude. Based on this analysis, a modified correlation between the pressure wave amplitude and the maximum pressure rise rate (MPRR) is developed by introducing an MPRR offset to account for the expansion work.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
X