Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Study of Vehicle Class Segregation Using Linear Handling Models

1995-02-01
950307
The handling, stability, and rollover resistance of vehicles is presently being studied by both the automotive industry and the National Highway and Traffic Safety Administration (NHTSA). However, to study the handling and rollover behavior of each vehicle on the road is not feasible. The ability to categorize and compare the rollover and handling behavior of various vehicles is a subject of considerable research interest. This paper examines the possibility of characterizing vehicle classes through the use of a three degree-of-freedom linear model. Initially, segregation is studied by evaluating the eigenvalue location in the complex domain for vehicle sideslip velocity, yaw rate, and roll angle. Then the influence of numerator dynamics on vehicle behavior is studied and vehicle class segregation is attempted through evaluation of the amplitude ratio of the frequency responses for sideslip velocity, yaw rate, and roll angle.
Technical Paper

An Analysis of Yaw Inducing Drag Forces Imparted During Tire Tread Belt Detachments

2007-04-16
2007-01-0836
In this study, tests were performed to understand the effects of asymmetric longitudinal forces on vehicle response which may be created in certain staged partial tire tread belt detachment tests. In a very small number of tests performed by others, tires cut to simulate partial tire tread belt detachments created longitudinal drag forces at the separating tire that induced substantial vehicle yaw. This drag force and yaw response are independent of vehicle type and suspension type; they are created by the separating tire tread interacting with the road surface and / or vehicle. Similar yaw inducing drag forces are further demonstrated by applying braking to only the right rear wheel location of an instrumented test vehicle. It is shown that vehicle yaw response results from this longitudinal force as opposed to vertical axle motion.
Technical Paper

Automated Vehicle Disengagement Reaction Time Compared to Human Brake Reaction Time in Both Automobile and Motorcycle Operation

2019-04-02
2019-01-1010
Autonomous Vehicle Disengagement Reports have been published by the California Department of Motor Vehicles since 2015. The State of California autonomous vehicle testing regulations require every manufacturer authorized to test autonomous vehicles on public roads to submit an annual report summarizing disengagements. In early versions of the annual report, automated vehicle manufacturers were required to provide the time that it took for a human driver to take manual control of the vehicle when reporting vehicle disengagements. This study analyzes reported automated vehicle disengagement reaction times from 2015 through 2017 for various manufacturers that provided information to the California Department of Motor Vehicles while operating vehicles in autonomous mode. This study compares the reported automated vehicle operation disengagement reaction time to field literature in testing and experimentation on human brake reaction times for both automobile and motorcycle operation.
Technical Paper

Automotive Restraint Loading Evidence for Moderate Speed Impacts and a Variety of Restraint Conditions

2006-04-03
2006-01-0900
One of the principal tools used by the accident reconstructionist to determine whether a vehicle occupant was properly restrained when an accident occurred is the examination and analysis of impact evidence and damage to interior structures of the vehicle. Careful analysis of such evidence not only assists in the determination of restraint usage, but can also provide insight into the pre-impact position of the occupant. However, the multi-faceted restraint systems and advanced materials used in modern vehicles can make the interpretation of vehicle interior damage difficult. This is especially true for impacts of mild or moderate severity, when interior damage may or may not be expected to occur, and the lack of any identifiable damage can be misinterpreted. In this paper, the restraint system damage resulting from a series of sled tests conducted at a range of mild to moderate impact severities with a normally positioned driver under various restraint conditions is discussed.
Technical Paper

Developments in Vehicle Center of Gravity and Inertial Parameter Estimation and Measurement

1995-02-01
950356
For some vehicle dynamics applications, an estimate of a vehicle's center of gravity (cg) height and mass moments of inertia can suffice. For other applications, such as vehicle models and simulations used for vehicle development, these values should be as accurate as possible. This paper presents several topics related to inertial parameter estimation and measurement. The first is a simple but reliable method of estimating vehicle mass moment of inertia values from data such as the center of gravity height, roof height, track width, and other easily measurable values of any light road vehicle. The second is an error analysis showing the effect, during a simple static cg height test, of vehicle motion (relative to the support system) on the vehicle's calculated cg height. A method of accounting for this motion is presented. Similarly, the effects of vehicle motion are analyzed for subsequent mass moment of inertia tests.
Technical Paper

Effects of Loading on Vehicle Handling

1998-02-23
980228
This paper explores the effects of changes in vehicle loading on vehicle inertial properties (center-of-gravity location and moments of inertia values) and handling responses. The motivation for the work is to gain better understanding of the importance vehicle loading has in regard to vehicle safety. A computer simulation is used to predict the understeer changes for three different vehicles under three loading conditions. An extension of this loading study includes the effects of moving occupants, which are modeled for inclusion in the simulation. A two-mass model for occupants/cargo, with lateral translational and rotational degrees of freedom, has been developed and is included in the full vehicle model. Using the simulation, the effects that moving occupants have on vehicle dynamics are studied.
Technical Paper

Repeatability and Bias Study on the Vehicle Inertia Measurement Facility (VIMF)

2009-04-20
2009-01-0447
Representative vehicle inertial characteristics are important parameters for the development of motor vehicles and the proper operation of on-board systems. The Vehicle Inertia Measurement Facility (VIMF) measures vehicle center of gravity location, principal moments of inertia, and the roll/yaw product of inertia. It is important to understand the VIMF’s accuracy and repeatability, as well as the underlying methodology and assumptions, when performing tests or using the results of the test. This study reports on a repeatability analysis performed at the lower and upper limits of the VIMF. Each test performed is a complete drive-on/drive-off test. The test sequence involves the repeatability evaluation of several different machine configurations. Ten complete tests are performed for each vehicle. To better address the possibility of measurement bias, the design and verification of a calibration fixture for inertial characteristics is presented.
Technical Paper

The Design of a Vehicle Inertia Measurement Facility

1995-02-01
950309
This paper describes the design of a vehicle inertia measurement facility (VIMF): a facility used to measure vehicle center of gravity position; vehicle roll, pitch, and yaw mass moments of inertia; and vehicle roll/yaw mass product of inertia. The rationale for general design decisions and the methods used to arrive at the decisions are discussed. The design is inspired by the desire to have minimal measurement error and short test time. The design was guided by analytical error analyses of the contributions of individual system errors to the overall measurement error. A National Highway Traffic Safety Administration (NHTSA) database of center of gravity position and mass moment of inertia data for over 300 vehicles was used in conjunction with the error analyses to design various VIMF components, such as the roll and yaw spring sizes.
Technical Paper

Vehicle Characterization Through Pole Impact Testing, Part II: Analysis of Center and Offset Center Impacts

2005-04-11
2005-01-1186
The severity of an impact in terms of the acceleration in the occupant compartment is dependent not only on the change in vehicle velocity, but also the time for the change in velocity to occur. These depend on the geometry and stiffness of both the striking vehicle and struck object. In narrow-object frontal impacts, impact location can affect the shape and duration of the acceleration pulse that reaches the occupant compartment. In this paper, the frontal impact response of a full-sized pickup to 10 mile per hour and 20 mile per hour pole impacts at the centerline and at a location nearer the frame rails is compared using the acceleration pulse shape, the average acceleration in the occupant compartment, and the residual crush. A bilinear curve relating impact speed to residual crush is developed.
X