Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

1998-10-19
982456
New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these vehicles was for street collection and transporting the collected refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines.
Technical Paper

A Study of the Effects of Fuel Type and Emission Control Systems on Regulated Gaseous Emissions from Heavy-Duty Diesel Engines

2004-03-08
2004-01-1085
The New York State Department of Environmental Conservation (DEC) and Environment Canada have jointly participated along with partners the New York City Metropolitan Transit Agency (MTA); Johnson Matthey, Environmental Catalysts & Technologies; Equilon Enterprises, LLC and Corning, Inc. in a project to evaluate the effect of various combinations of fuels and aftertreatment configurations on diesel emissions. Emissions measurements were performed during engine dynamometer testing of an International DT 466E heavy-duty diesel engine. Fuels tested in the study were Diesel Fuel 1 and 2, low sulfur diesel (150 ppm), two ultralow sulfur fuels (<30 ppm), Fischer-Tropsch, Biodiesel, PuriNOx™ and two Ethanol-Diesel blends. Configurations tested were: engine out, and diesel oxidation catalyst, continuously regenerating diesel filter, and exhaust gas recirculation aftertreatment. In general, the use of more aggressive aftertreatment (ie.
Journal Article

A Work-Based Window Method for Calculating In-Use Brake-Specific NOx Emissions of Heavy-Duty Diesel Engines

2008-04-14
2008-01-1301
A work-based window method has been developed to calculate in-use brake-specific oxides of nitrogen (NOx) emissions for all engine speeds and engine loads. During an in-use test, engine speed and engine torque are read from the engine's electronic control unit, and along with time, are used to determine instantaneous engine power. Instantaneous work is calculated using this power and the time differential in the data collection. Work is then summed until the target amount of work is accumulated. The emissions levels are then calculated for that window of work. It was determined that a work window equal to the theoretical Federal Test Procedure (FTP) cycle work best provides a means of comparison to the FTP certification standard. Also, a failure criterion has been established based on the average amount of power generated in the work window and the amount of time required to achieve the target work window to determine if a particular work window is valid.
Technical Paper

Advanced Modeling of Diesel Particulate Filters to Predict Soot Accumulation and Pressure Drop

2011-09-11
2011-24-0187
Diesel particulate filters (DPFs) are recognized as the most efficient technology for particulate matter (PM) reduction, with filtration efficiencies in excess of 90%. Design guidelines for DPFs typically are: high removal efficiency, low pressure drop, high durability and capacity to resist high temperature excursions during regeneration events. The collected mass inside the trap needs to be periodically oxidized to regenerate the DPF. Thus, an in-depth understanding of filtration and regeneration mechanisms, together with the ability of predicting actual DPF conditions, could play a key role in optimizing the duration and number of regeneration events in case of active DPFs. Thus, the correct estimation of soot loading during operation is imperative for effectively controlling the whole engine-DPF assembly and simultaneously avoidingany system failure due to a malfunctioning DPF. A viable way to solve this problem is to use DPF models.
Technical Paper

After-Treatment Systems to Meet China NS VI, India BS VI Regulation Limits

2017-03-28
2017-01-0941
Future emissions regulations proposed for the Asian automotive industry (BS VI regulations for India and NS VI regulations for China) are strict and similar to EU VI regulations. As a result, they will require both advanced NOx control as well as advanced Particulate Matter (PM) control. This will drive implementation of full Catalyzed Diesel Particulate Filter (cDPF) and simultaneous NOx control using Selective Catalytic Reduction (SCR) technologies. In this work, we present the performance of various Diesel Oxidation Catalyst (DOC), cDPF, SCR and Ammonia slip catalyst (ASC) systems utilizing the World Harmonized Transient Cycle (WHTC). Aftertreatment Systems (ATS) required for both active and passive filter regeneration applications will be discussed. The sensitivity of key design parameters like catalyst technology, PGM loading, catalyst sizing to meet the regulation limits has been investigated.
Journal Article

An Evaluation of Particle Size Distributions and Particle Number-Based Reductions from Various PM Emission Control Technologies

2011-04-12
2011-01-0600
For diesel emission control technologies, reduction efficiencies of Particulate Matter (PM) control systems have been traditionally reported based on mass-based criteria. However, particle number-based criteria are now receiving increased attention. In this paper, results of real-time particle size distribution and number based evaluation of the effectiveness of multiple PM control technologies are reported on an HDD engine. An Engine Exhaust Particle Sizer (EEPS) was used for comparative analysis. The technologies that were evaluated included diesel oxidation catalysts (DOC), a DOC with an uncatalyzed wall-flow filter as a continuously regenerating diesel particulate filter (CR-DPF) system, a DOC with a catalytically coated wall-flow filter as a catalyzed CR-DPF (CCR-DPF), and a DOC with a partial filter as a continuously regenerating partial filter (CR-PF).
Technical Paper

Biodiesel Blend Emissions of a 2007 Medium Heavy Duty Diesel Truck

2010-10-05
2010-01-1968
Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel (PD). Emissions differences between vehicles operated on biodiesel blends and on diesel have been published previously, but data do not cover the latest engine technologies. Prior studies have shown that biodiesel offers advantages in reducing particulate matter, with either no advantage or a slight disadvantage for oxides of nitrogen emissions. This paper describes a recent study on the emissions impact of two biodiesel blends B20A, made from 20% animal fat (tallow) biodiesel and 80% PD, and B20B, obtained from 20% soybean biodiesel and 80% PD. These blends used the same PD fuel for blending and were contrasted with the same PD fuel as a reference. The research was conducted on a 2007 medium heavy-duty diesel truck (MHDDT), with an engine equipped with Exhaust Gas Recirculation (EGR) and a Diesel Particulate Filter (DPF).
Technical Paper

Characteristics of Exhaust Emissions from a Heavy-Duty Diesel Engine Retrofitted to Operate in Methane/Diesel Dual-Fuel Mode

2013-09-08
2013-24-0181
The need for a cleaner and less expensive alternative energy source to conventional petroleum fuels for powering the transportation sector has gained increasing attention during the past decade. Special attention has been directed towards natural gas (NG) which has proven to be a viable option due to its clean-burning properties, reduced cost and abundant availability, and therefore, lead to a steady increase in the worldwide vehicle population operated with NG. The heavy-duty vehicle sector has seen the introduction of natural gas first in larger, locally operated fleets, such as transit buses or refuse-haulers. However, with increasing expansion of the NG distribution network more drayage and long-haul fleets are beginning to adopt natural gas as a fuel.
Technical Paper

Chassis Dynamometer Emission Measurements from Trucks and Buses using Dual-Fuel Natural Gas Engines

1999-10-25
1999-01-3525
Emissions from trucks and buses equipped with Caterpillar dual-fuel natural gas (DFNG) engines were measured at two chassis dynamometer facilities: the West Virginia University (WVU) Transportable Emissions Laboratory and the Los Angeles Metropolitan Transportation Authority (LA MTA). Emissions were measured over four different driving cycles. The average emissions from the trucks and buses using DFNG engines operating in dual-fuel mode showed the same trends in all tests - reduced oxides of nitrogen (NOx) and particulate matter (PM) emissions and increased hydrocarbon and carbon monoxide (CO) emissions - when compared to similar diesel trucks and buses. The extent of NOx reduction was dependent on the type of test cycle used.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: A Fleet Start-Up Experience

2000-10-16
2000-01-2821
Previous studies have shown that regenerating particulate filters are very effective at reducing particulate matter emissions from diesel engines. Some particulate filters are passive devices that can be installed in place of the muffler on both new and older model diesel engines. These passive devices could potentially be used to retrofit large numbers of trucks and buses already in service, to substantially reduce particulate matter emissions. Catalyst-type particulate filters must be used with diesel fuels having low sulfur content to avoid poisoning the catalyst. A project has been launched to evaluate a truck fleet retrofitted with two types of passive particulate filter systems and operating on diesel fuel having ultra-low sulfur content. The objective of this project is to evaluate new particulate filter and fuel technology in service, using a fleet of twenty Class 8 grocery store trucks. This paper summarizes the truck fleet start-up experience.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: Regulated Emissions

2000-10-16
2000-01-2815
Emissions from heavy-duty vehicles may be reduced through the introduction of clean diesel formulations, and through the use of catalyzed particulate matter filters that can enjoy increased longevity and performance if ultra-low sulfur diesel is used. Twenty over-the-road tractors with Detroit Diesel Series 60 engines were selected for this study. Five trucks were operated on California (CA) specification diesel (CARB), five were operated on ARCO (now BP Amoco) EC diesel (ECD), five were operated on ARCO ECD with a Johnson-Matthey Continuously Regenerating Technology (CRT) filter and five were operated on ARCO ECD with an Engelhard Diesel Particulate Filter (DPX). The truck emissions were characterized using a transportable chassis dynamometer, full-scale dilution tunnel, research grade gas analyzers and filters for particulate matter (PM) mass collection. Two test schedules, the 5 mile route and the city-suburban (heavy vehicle) route (CSR), were employed.
Technical Paper

Combined SCR and DPF Technology for Heavy Duty Diesel Retrofit

2005-04-11
2005-01-1862
The retrofitting of diesel engines with oxidation catalyst and particulate filter technology for the reduction of particulate matter (PM), hydrocarbons (HC) and carbon monoxide (CO) emissions has become an established practice. The design and performance of such systems have been commercially proven to the point that the application of these technologies is a cost effective means for states to effectively meet pollution reduction goals. One of the reasons that these technologies are so widely applied is because they can be sized and fitted based on easily measurable vehicle parameters and published engine emission information. These devices generally work passively with basic temperature and back pressure monitoring devices being used to alert the operator to upset conditions. The application of an effective NOx reduction technology in similar retrofit installation, is more complicated. There are no passive NOx reduction technologies that can be retrofit onto HDD vehicles.
Technical Paper

Combustion and Emission Characteristics of Fischer-Tropsch and Standard Diesel Fuel in a Single-Cylinder Diesel Engine

2001-09-24
2001-01-3517
The emissions reduction of Fischer-Tropsch (FT) diesel fuel has been demonstrated in several recent publications in both laboratory engine testing and in-use vehicle testing. Reduced emission levels have been attributed to several chemical and physical characteristics of the FT fuels including reduced density, ultra-low sulfur levels, low aromatic content and high cetane rating. Some of the effects of these attributes on the combustion characteristics in diesel engines have only recently been documented. In this study, a Ricardo Proteous, single-cylinder, 4-stroke DI engine is instrumented for in-cylinder pressure measurements. The engine was run at several steady engine states at multiple timing conditions using both federal low sulfur and natural gas derived FT fuels. The emissions and performance data for each fuel at each steady state operating conditions were compared.
Technical Paper

Comparative Emissions from Diesel and Biodiesel Fueled Buses from 2002 to 2008 Model Years

2010-10-05
2010-01-1967
Fuel economy and regulated emissions were measured from eight forty-foot transit buses operated on petroleum diesel and a “B20” blend of 80% diesel fuel and 20% biodiesel by volume. Use of biodiesel is attractive to displace petroleum fuel and reduce an operation's carbon footprint. Usually it is assumed that biodiesel will also reduce particulate matter (PM) emissions relative to those of petroleum diesel. Model years of the vehicles evaluated were newer 2007-08 Gillig low-floor buses, 2005 Gillig Phantom buses, and a 2002 Gillig Phantom bus. Engine technology represented three different emissions standards, and included buses with OEM diesel particulate filters. Each bus was evaluated using two transient speed-time schedules, the Orange County Transit Authority (OCTA) driving schedule which represents moderate speed urban/suburban operation and the Urban Dynamometer Driving Schedule (UDDS) which represents a mix of suburban and higher speed on-highway operation.
Technical Paper

Comparison of Heavy-Duty Truck Diesel Particulate Matter Measurement:TEOM and Traditional Filter

2005-05-11
2005-01-2153
The Tapered Element Oscillating Microbalance (TEOM) measures captured particle mass continuously on a small filter held on an oscillating element. In addition to traditional filter-based particulate matter (PM) measurement, a TEOM was used to characterize PM from the dilute exhaust of trucks examined in two phases (Phase 1.5 and Phase 2) of the Coordinating Research Council (CRC) Heavy-Duty Vehicle Emissions Inventory Project E-55/E-59. Test schedules employed were the Heavy Heavy-Duty Diesel Truck (HHDDT) test schedule that consists of four modes (Idle, Creep, Transient and Cruise), the HHDDT Short (HHDDT_S) which represents high-speed freeway operation, and the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS). TEOM results were on average 6% lower than those from traditional particulate filter weighing. Data (in units of g/cycle) were examined by plotting cycle-averaged TEOM mass against filter mass. Regression (R2) values for these plots were from 0.88 to 0.99.
Technical Paper

Comparison of Particulate Matter Emissions from Different Aftertreatment Technologies in a Wind Tunnel

2013-09-08
2013-24-0175
Stringent emission regulations have forced drastic technological improvements in diesel after treatment systems, particularly in reducing Particulate Matter (PM) emissions. Those improvements generally regard the use of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF) and lately also the use of Selective Catalyst Reduction (SCR) systems along with improved engine control strategies for reduction of NOx emissions from these engines. Studies that have led to these technological advancements were made in controlled laboratory environment and are not representative of real world emissions from these engines or vehicles. In addition, formation and evolution of PM from these engines are extremely sensitive to overall changes in the dilution process.
Technical Paper

Consideration for Fischer-Tropsch Derived Liquid Fuels as a Fuel Injection Emission Control Parameter

1998-10-19
982489
The U.S. Department of Energy (DOE) is embarking on a program investigating the use of Fischer-Tropsch (FT) fuels as a premium quality substitute or blending agent in direct-injection compression-ignition (diesel) engines. This paper aims to direct attention to the processing of FT fuels, emissions issues, available engine technology and the opportunity offered by FT diesel fuels for emissions control when considering diesel injection techniques. In modern automotive and heavy duty direct-injected (DI) diesel engines, precise fuel injection control is critical for achievement of 1998 and 2004 NOX and PM emission levels. High injection pressures, pilot injection and injection rate shaping are all optimized to maximize efficiency and power and to minimize emissions. These parameters must be considered as variables in the trade-off scenario between NOX and PM. Another parameter that may be considered important is the fuel type.
Technical Paper

Contribution of Soot Contaminated Oils to Wear-Part II

1999-05-03
1999-01-1519
Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
Technical Paper

Correlation Study of PM and NOx for Heavy-Duty Vehicles Across Multiple Drive Schedules

2004-10-25
2004-01-3022
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
Technical Paper

Creation and Evaluation of a Medium Heavy-Duty Truck Test Cycle

2003-10-27
2003-01-3284
The California Air Resources Board (ARB) developed a Medium Heavy-Duty Truck (MHDT) schedule by selecting and joining microtrips from real-world MHDT. The MHDT consisted of three modes; namely, a Lower Speed Transient, a Higher Speed Transient, and a Cruise mode. The maximum speeds of these modes were 28.9, 58.2 and 66.0 mph, respectively. Each mode represented statistically selected truck behavior patterns in California. The MHDT is intended to be applied to emissions characterization of trucks (14,001 to 33,000lb gross vehicle weight) exercised on a chassis dynamometer. This paper presents the creation of the MHDT and an examination of repeatability of emissions data from MHDT driven through this schedule. Two trucks were procured to acquire data using the MHDT schedule. The first, a GMC truck with an 8.2-liter Isuzu engine and a standard transmission, was tested at laden weight (90% GVW, 17,550lb) and at unladen weight (50% GVW, 9,750lb).
X