Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Evaluation of Structural and High-Temperature Magnesium Alloys

2002-03-04
2002-01-0080
The automobile and light truck industries are increasingly using more magnesium castings in structural and high-temperature applications. Unfortunately, the castability and mechanical behavior of the commonly used alloys have not been compared under similar conditions. Further, new alloys intended for high-temperature applications (Noranda AJ50X, Noranda AJ52X, Hydro AS21X, Dead Sea Magnesium MRI-153) are being promoted, but their casting and mechanical behavior are not well known. Therefore, five high temperature magnesium alloys (AJ50X, AJ52X, AS21X, MRI-153 and AE42), two magnesium alloys more commonly used for structural applications (AM50A and AM60B) and one aluminum alloy (383) were melted and cast at the INTERMET Monroe City Plant (a production high-pressure die casting facility). The castings were subsequently evaluated at the INTERMET Technical Center and outside testing laboratories.
Technical Paper

Lightweight Iron and Steel Castings for Automotive Applications

2000-03-06
2000-01-0679
The use of aluminum to produce lightweight automotive castings has gained wide acceptance despite significant cost penalties. Lightweight iron and steel casting designs have been largely ignored despite their obvious cost and property advantages. This paper reviews and discusses the following: 1) various processes for producing lightweight iron and steel castings, 2) examples of lightweight components in high-volume production, 3) examples of conversions from aluminum to iron, 4) material properties of interest to designers, 5) examples of concept components and 6) efforts to improve the design and manufacturing processes for lightweight iron and steel castings. In summary, the potential for low-cost, lightweight iron and steel castings to aid the automotive industry in achieving both cost and weight objectives has been demonstrated and continues to expand. In general, however, automotive designers and engineers have not yet fully taken advantage of these technologies.
Technical Paper

Machinability of MADI™

2005-04-11
2005-01-1684
High strength materials have desirable mechanical properties but often cannot be machined economically, which results in unacceptably high finished component cost. MADI™ (machinable austempered ductile iron) overcomes this difficultly and provides the highly desirable combination of high strength, excellent low temperature toughness, good machinability and attractive finished component cost. The Machine Tool Systems Research Laboratory at the University of Illinois at Urbana-Champaign performed extensive machinability testing and determined the appropriate tools, speeds and feeds for milling and drilling (https://netfiles.uiuc.edu/malkewcz/www/MADI.htm). This paper provides the information necessary for the efficient and economical machining of MADI™ and provides comparative machinability data for common grades of ductile iron (EN-GJS-400-18, 400-15, 450-10, 500-7, 600-3 & 700-2) for comparison.
Technical Paper

Mechanical Properties of High Performance Aluminum Castings

2001-03-05
2001-01-0406
Squeeze casting and semi-solid metal forming produce aluminum castings with exceptional properties. This paper compares the mechanical properties and microstructures of a production component processed by a variety of casting processes and heat treatments. Note, in all cases, the current insert tool used for squeeze casting was adapted to be utilized in the various semi-solid metal forming processes. The results showed that semi-solid metal forming produced consistently better mechanical properties compared to squeeze casting. Defects, primarily oxide films, were determined to be responsible for the lower and less consistent properties of the squeeze cast material.
X