Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

4 Stroke Gasoline Engine Performance Optimization Using Statistical Techniques

2001-12-01
2001-01-1800
The engine designer has to find novel methods to optimize the engine efficiency faster as the engine development cycle is getting shortened due to the continuous growing market demands. Engine optimization involves fine tuning of the various engine parameters and conducting a large number of tests on actual engine test bed. In this paper, modern techniques that have been used to optimize a small 4stroke air-cooled engine performance have been described. The engine has been modelled using one-dimensional thermodynamic engine modelling software (AVL-BOOST). Design of experiments (DoE) tools have been used to optimize the engine variables. The input parameters form an orthogonal array of L27 matrix and the out put characteristics of the engine (responses) have been predicted by using BOOST software. This design matrix has been used to study and optimize thirteen factors in three levels (313).
Technical Paper

A 3D-CFD Numerical Approach for Combustion Simulations of Spark Ignition Engines Fuelled with Hydrogen: A Preliminary Analysis

2023-04-11
2023-01-0207
With growing concern about global warming, alternatives to fossil fuels in internal combustion engines are searched. In this context, hydrogen is one of the most interesting fuels as it shows excellent combustion properties such as laminar flame speed and energy density. In this work a CFD methodology for 3D-CFD in-cylinder simulations of engine combustion is proposed and its predictive capabilities are validated against test-bench data from a direct injection spark-ignition (DISI) prototype. The original engine is a naturally aspirated, single cylinder compression ignition (Diesel fueled) unit. It is modified substituting the Diesel injector with a spark plug, adding two direct gas injectors, and lowering the compression ratio to run with hydrogen fuel. A 3D-CFD model is built, embedding in-house developed ignition and heat transfer models besides G-equation one for combustion.
Technical Paper

A 3D-Simulation with Detailed Chemical Kinetics of Combustion and Quenching in an HCCI Engine

2008-06-23
2008-01-1655
A 3D-CFD model with detailed chemical kinetics was developed to investigate the combustion characteristics of HCCI engines, especially those fueled with hydrogen and n-heptane. The effects of changes in some of the key important variables that included compression ratio and chamber surface temperature on the combustion processes were investigated. Particular attention was given, while using a finer 3-D mesh, to the development of combustion within the chamber crevices between the piston top-land and cylinder wall. It is shown that changes in the combustion chamber wall surface temperature values influence greatly the autoignition timing and location of its first occurrence within the chamber. With high chamber wall temperatures, autoignition takes place first at regions near the cylinder wall while with low surface temperatures; autoignition takes place closer to the central region of the mixture charge.
Technical Paper

A Before Treatment Method for Reduction of Emissions in Diesel Engines

2000-10-16
2000-01-2791
Through an addition of a small amount of hydrogen to the main fuel, combustion process can be considerably enhanced in internal combustion engines producing significantly lower levels of exhaust emissions. This improvement in combustion can be mainly attributed to the faster and cleaner burning characteristics of hydrogen in comparison to conventional liquid and gaseous fuels. An oxygen-enrichment of a fuel-air mixture also improves thermal efficiency and reduces especially particulate, carbon monoxide and unburned hydrocarbon emissions in exhaust. This contribution describes the results of experimental investigation where a small amount of hydrogen and oxygen is produced by Hydrogen Generating System through the electrical dissociation of water and are added to the intake of a compression ignition engine operating on a commercial diesel fuel. It is shown that level of exhaust emissions including NOx can be moderately reduced using such a pre-treatment method in diesel engines.
Technical Paper

A COMPARISON OF GRID-CONNECTED HYBRID AND HYDROGEN FUEL-CELL ELECTRIC VEHICLES

2007-09-16
2007-24-0073
For fuelling road transportation in the future, particularly light-duty vehicles, there has been much speculation about the use of hydrogen and fuel cells to provide electrical power to an all-electric drive train. An alternative powertrain would use a simple battery to store electricity directly, using power from the electrical grid to charge the battery when the vehicle is not in use. The energy efficiency of these two different approaches has been compared, using a complete “energy conversion chain analysis”. The successful development and introduction into the marketplace of grid-connected hybrid vehicles could eliminate the need for road vehicles to use petroleum fuels, at least for the majority of miles traveled. If electricity were to be generated primarily from sustainable primary energy sources, then road transportation would also become sustainable, resulting in an “Electricity Economy”, rather than a “Hydrogen Economy.
Technical Paper

A Camshaft Torque Actuated Vane Style VCT Phaser

2005-04-11
2005-01-0764
BorgWarner has developed a continuously variable vane style VCT camshaft phaser that, differing from the oil pressure actuated phasers in production, utilizes camshaft torque energy, not oil pump flow, to actuate. This VCT phaser has several distinct advantages, low oil flow requirements and fast response rates even at low RPM. The low oil flow requirement, allows this Cam Phaser to easily adapt to existing engine platforms without major engine modifications or increases in oil pump size. For new engine designs a smaller oil pump can be selected and thereby improve overall engine efficiency. Since the phaser responds to camshaft torque energy and actuates independent of oil pressure, fast response rates are available from idle on up through the engine operating range, allowing the engine calibrator to adopt a more aggressive approach to camshaft timing.
Technical Paper

A Characterization of Exhaust Emissions from Lean Burn, Rotary, and Stratified Charge Engines

1977-02-01
770301
This paper reports the results of an exhaust emissions characterization from the non-catalyst control systems employed on the Mazda RX-4 rotary, the Honda CVCC, and the Chrysler electronic lean burn. Throughout the paper, exhaust emissions from these vehicles are compared to those from a Chrysler equipped with an oxidation catalyst and an air pump. The emissions characterized are carbon monoxide, hydrocarbons, nitrogen oxides, sulfur dioxide, sulfates, hydrogen sulfide, carbonyl sulfide, hydrogen cyanide, aldehydes, particulate matter, and detailed hydrocarbons. A brief description of the sampling and analysis procedures used is included within the discussion.
Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Technical Paper

A Comparative Review of Fuel Cell Vehicles (FCVs) and Hybrid Electric Vehicles (HEVs) Part II: Control Strategies, Power Train, Total Cost, Infrastructure, New Developments, and Manufacturing & Commercialization

2003-06-23
2003-01-2299
In this paper, a number of issues of concern in relation to hybrid electric vehicles (HEVs) and fuel cell vehicles (FCVs) are discussed and comparatively reviewed. Currently, almost all the activities in the development of new generation of vehicles are focused on FCVs and HEVs. However, there are still uncertainties as to which provides the maximum benefits in terms of performance, energy savings, impact on environment etc. In particular, potential control strategies for FCVs and HEVs will be discussed and compared. For FCVs, these include power-averaging control as well as control based on maximum conversion efficiency, among others. HEV control strategies include electrically peaking hybrid propulsion, and parameter optimization approaches such as battery SOC maximization, emissions minimization, and optimal power management.
Technical Paper

A Comparative Study of Knock Formation in Gasoline and Methanol Combustion Using a Multiple Spark Ignition Approach: An Optical Investigation

2024-04-09
2024-01-2105
Engine knock is a major challenge that limits the achievement of higher engine efficiency by increasing the compression ratio of the engine. To address this issue, using a higher octane number fuel can be a potential solution to reduce or eliminate the propensity for knock and so obtain better engine performance. Methanol, a promising alternative fuel, can be produced from conventional and non-conventional energy resources, which can help reduce pollutant emissions. Methanol has a higher octane number than typically gasolines, which makes it a viable option for reducing knock intensity. This study compared the combustion characteristics of gasoline and methanol fuels in an optical spark-ignition engine using multiple spark plugs. The experiment was carried out on a single-cylinder four-stroke optical engine. The researchers used a customized metal liner with four circumferential spark plugs to generate multiple flame kernels inside the combustion chamber.
Technical Paper

A Comparative Study of Plasma lgnition Systems

1983-02-01
830479
Performance of an array of plasma ignition systems has been studied in a CFR engine.This included a standard spark plug, an extended spark plug, a surface discharge plug, and two plasma jet ignitors, one with open cavity and the other with cavity provided with a jet forming orifice.For all the tests the engine was run at a compression ratio of 3:1, a wide open throttle, and minimum for best torque (MBT) ignition timing. In this way specific information was obtained on ignition delay, duration of the exothermic combustion process, engine efficiency, and pollutant emissions.The study demonstrated the effect of various ignition systems on engine performance as the lean operating limit is approached.
Technical Paper

A Comparative Study on Different Methods of Using Waste Cooking Oil as Fuel in a Compression Ignition Engine

2017-03-28
2017-01-0876
Different methods to improve the performance of a WCO (waste cooking oil of sunflower) based mono cylinder compression ignition (CI) engine were investigated. Initially WCO was converted into its emulsion by emulsification process and tested as fuel. In the second phase, the engine intake system was modified to admit excess oxygen along with air to test the engine with WCO and WCO emulsion as fuels under oxygen enriched environment. In the third phase, the engine was modified to work in the dual fuel mode with hydrogen being used as the inducted fuel and either WCO or WCO emulsion used as the pilot fuel. All the tests were carried out at 100% and 40% of the maximum load (3.7 kW power output) at the rated speed of 1500 rpm. Engine data with neat diesel and neat WCO were used for comparison. WCO emulsion indicated considerable improvement in performance. The smoke and NOx values were noted to be less than neat WCO.
Technical Paper

A Comparative Study on Fuel Economy for CVT and 9-speed AT based Vehicles

2017-10-08
2017-01-2435
It is well-known that, compared with automatic transmissions (ATs), continuously variable transmission (CVT) shows advantages in fuel saving due to its continuous shift manner, since this feature enables the engine to operate in the efficiency-optimized region. However, as the AT gear number increases and the ratio gap narrows, this advantage of CVT is challenged. In this paper, a comparative study on fuel economy for a CVT based vehicle and a 9-speed automatic transmission (AT) based vehicle is proposed. The features of CVT and AT are analyzed and ratio control strategies for both the CVT and 9-speed AT based vehicles are designed from the view point of vehicle fuel economy, respectively. For the 9-speed AT, an optimal gear shift map is constructed. With this gear shift map, the optimal gear is selected as vehicle velocity and driving condition vary.
Technical Paper

A Comparison of Hydrogen and Propane Fueling of an Internal Combustion Engine

1979-02-01
790677
An LP-gas industrial engine was adapted operation on hydrogen or LP-gas so that a comparative analysis of the two fuels could be made. Several alterations were made to the engine to allow operation on hydrogen without backfiring. Performance and cylinder pressures of the engine on the two separate fuels was evaluated under various conditions. The effect on engine performance of water induction for controlling backfiring was also studied. The basic intent of the research program was to evaluate the use of hydrogen for an agricultural engine application.
Technical Paper

A Comparison of Methanol and Dissociated Methanol Illustrating Effects of Fuel Properties on Engine Efficiency—Experiments and Thermodynamic Analyses

1985-02-01
850217
Methanol, a popular alternative fuel candidate, can theoretically be dissociated on-board a vehicle into a 2/1 molar mixture of hydrogen (H2) and carbon monoxide (CO) having a 14 percent greater heating value than that of methanol vapor. In this study, engine efficiency and fuel consumption with methanol vapor and dissociated methanol (simulated by a 2/1 mixture of Ha and CO) were compared in a single-cylinder engine at equivalence ratios (Φ’s) ranging from 0.5 to 0.9 and compression ratios (CR’s) from 11 to 14. Whan compared at the same Φ and CR, the reduction in fuel consumption for dissociated methanol compared to methanol (3-7 percent) was smaller than would be expected based on heating value alone. Indicated thermal efficiency with dissociated methanol was only 0.89-0.55 times that with methanol. Thermodynamic analyses were conducted to isolate the factors responsible for lower efficiency with dissociated methanol.
Technical Paper

A Comparison of Olefin and Paraffin Autoignition chemistries: A Motored-Engine Study

1989-09-01
892081
The autoignition chemistries of the olefins 1-butene, 2-butene, isobutene, 2-methyl-2-butene, and 1-hexene and their corresponding paraffins were examined in a motored, single-cylinder engine by measuring stable intermediate species and performing heat-release analyses. The same engine conditions were used for each olefin-paraffin pair, and compression ratio was varied to affect different levels of chemical activity. Paraffin autoignition chemistry is dominated by hydrogen abstraction from the fuel, followed by the intramolecular alkylperoxy isomerization mechanism. Olefin autoignition chemistry differs markedly being controlled by radical addition to the double bond. Hydroxyl radical addition is followed by oxygen addition to the adjacent radical site, followed by scission forming two carbonyls. Hydroperoxyl radical addition yields an epoxy directly. Experimental measurements for each olefin-paraffin pair are compared with each other and with literature values.
Technical Paper

A Comparison of the Magnetic Properties of Hot Repressed and 7.4 g/cm3 Iron and 0.45% Phosphorus Iron Cores

1981-02-01
810239
Atomized iron powder was screened to narrow fractions and annealed. Intermetallic Fe3P powder was blended with the fractions to provide an alloy containing 0.45% phosphorus after sintering. Cores were pressed to a density of 7.4 g/cm3 and sintered at temperatures ranging from 1600°F (870°C) to 2600°F (1430°C) in hydrogen. Magnetic properties were determined from the sintered cores and compared with previous properties measured for iron and hot repressed 0.45% phosphorus iron. It was found that the induction at any density level was approximately 500 gausses (0.05 teslas) lower than for iron. Remanent magnetization was influenced by the size of the pores. If pores were large, remanent magnetization was 8 K gausses (0.8 teslas) and increased to 12 K gausses (1.2 teslas) as the pores become finer. Both maximum permeability and the coercive force were improved when 0.45% phosphorus was added.
Technical Paper

A Competitive Approach to an Active Exhaust Heat Recovery System Solution

2020-04-14
2020-01-0161
As greenhouse gas regulations continue to tighten, more opportunities to improve engine efficiency emerge, including exhaust gas heat recovery. Upon cold starts, engine exhaust gases downstream of the catalysts are redirected with a bypass valve into a heat exchanger, transferring its heat to the coolant to accelerate engine warm-up. This has several advantages, including reduced fuel consumption, as the engine’s efficiency improves with temperature. Furthermore, this accelerates readiness to defrost the windshield, improving both safety as well as comfort, with greater benefits in colder climates, particularly when combined with hybridization’s need for engine on-time solely for cabin heating. Such products have been in the market now for several years; however they are bulky, heavy and expensive, yielding opportunities for competitive alternatives.
Technical Paper

A Computational Study of Wall Temperature Effects on Engine Heat Transfer

1991-01-25
910459
Recently, several theories have been offered as possible explanations for claimed increases in diesel engine heat transfer when combustion chamber surface temperatures are raised through insulation. A multi-dimensional computational fluid dynamics (CFD) analysis, using a recently developed near wall turbulent heat transfer model, has been employed to investigate the validity of two of these theories. The proposed mechanisms for increased heat transfer in the presence of high wall temperatures are: 1 piston-induced compression heating of the near wall gas which increases the near wall temperature gradient when wall temperatures are high; 2 increased penetration of hot, burned gases into the near wall flow during combustion through reduction of the flame quench distance.
Technical Paper

A Control Oriented Model with Variable Valve Timing for HCCI Combustion Timing Control

2013-04-08
2013-01-0588
Homogeneous Charge Compression Ignition (HCCI) is a promising concept for combustion engines to reduce both emissions and fuel consumption. HCCI combustion control is a challenging issue because there is no direct initiator of combustion. Variable Valve Timing (VVT) is being used in SI engines to improve engine efficiency. When VVT is used in conjunction with HCCI combustion it is an effective way to control the start of combustion. VVT changes the amount of trapped residual gas and the effective compression ratio for each cycle both of which have a strong effect on combustion timing in HCCI engines. To control HCCI combustion, a physics based control oriented model is developed that includes the effect of trapped residual gas on combustion timing. The control oriented model is obtained by taking a physics based model of the reaction kinetics and transient dynamics and systematically reducing the model using simplification of reaction mechanisms.
X