Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Standard

EMISSION TEST DRIVING SCHEDULES

1991-06-01
HISTORICAL
J1506_199106
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this document will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This document includes: a. Descriptions of driving schedules; and b. Second-by second definition of speed versus time sequences.
Standard

EMISSION TEST DRIVING SCHEDULES

1988-06-01
HISTORICAL
J1506_198806
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this information report will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This information report includes: 1 - Descriptions of driving schedules. 2 - Second-by second definition of speed versus time sequences.
Standard

ENGINE MOUNTINGS

1985-07-01
HISTORICAL
J615_198507
This SAE Standard defines engine mounting dimensions for industry standardization and interchangeability. Table 1 and Fig. 1 are dimensions for arm type mountings. Table 2 and Fig. 2 are for side pad mountings. For engine housing SAE flange dimensions, see SAE J617. For engine foot type mountings (front and rear), see SAE J616.
Standard

Flywheels for Single-Plate Spring-Loaded Clutches

2012-05-31
CURRENT
J618_201205
This SAE Recommended Practice applies to flywheels for dry spring-loaded clutches used on internal combustion engines. Figure 1 and Tables 1, 2, and 3 report information currently used in the industry. Clutches requiring other dimensions are also manufactured. Dimensions given are primarily for single-plate clutches. Flywheels for two plate clutches have the same dimensions if an adaptor for the intermediate plate and second driven disc is supplied with the clutch. If instead the flywheel is to be extended to adapt the intermediate plate and second driven member, consult the clutch manufacturer for the required J dimension and drive arrangements for the intermediate plate. See SAE J1806 for flywheels for size 14 and 15.5 two plate pull-type clutches.
Standard

Guide to the Application and Use of Engine Coolant Pump Face Seals

2000-11-07
HISTORICAL
J1245_200011
This SAE Recommended Practice is intended as a guide in the usage of mechanical face seals for the engine coolant pump application. The main purpose of the document is to fill the void caused by the lack of a ready source of practical information on the design and use of the engine coolant pump face seal. Included in the document is a compilation of present practices, as in a description of the various types of seals, material combinations, design data, tolerances, drawing format, qualification and inspection information, and quality control data. The terminology used throughout the document is recommended and, through common usage, is hoped to promote uniformity in seal nomenclature.
Standard

IMPACT OF ALTERNATIVE FUELS ON ENGINE TEST AND REPORTING PROCEDURES

1995-06-28
HISTORICAL
J1515_199506
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
Standard

INSTRUMENTATION AND TECHNIQUES FOR EXHAUST GAS EMISSIONS MEASUREMENT

1971-06-01
HISTORICAL
J254_197106
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and grab sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2), and oxygen (O2). This recommended practice includes the following sections: 1. Introduction 2. Definitions and Terminology 3. Sampling and Instrumentation 4. Associated Test Equipment 5. Test Procedures Appendix—Other Measurement Technology
Standard

Impact of Alternative Fuels on Engine Test and Reporting Procedures

2011-09-06
CURRENT
J1515_201109
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2020-10-06
CURRENT
J335_202010
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2012-10-23
HISTORICAL
J335_201210
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

NONMETALLIC GASKETS FOR GENERAL AUTOMOTIVE PURPOSES

1963-04-01
HISTORICAL
J90A_196304
These specifications for SAE J90 are intended to define the basic properties of commercial nonmetallic gasketing materials commonly used in automotive applications. These include materials composed of asbestos or other inorganic fibers, cork, or cellulose or other organic fibers, in combination with various binders or impregnants. Rubber compounds without fibrous or cork reinforcement are not included since they are covered in SAE Standard, Specifications for Elastomer Compounds for Automotive Applications—SAE J14, and in ASTM D 735-61T. Although the test methods and values are designed to describe the basic properties of the material in each category, they do not define all of, the properties which govern gasket performance. Caution should, therefore, be exercised in using these specifications as a basis for the selection of materials.
Standard

SPLIT TYPE BUSHINGS - DESIGN AND APPLICATION

1981-12-01
HISTORICAL
J835_198112
This SAE Standard presents the standard sizes, important dimensions, specialized measurement techniques and tolerances for split type bushings. Both SI and inch sizes are shown; their dimensions are not exact equivalents. New designs shall use SI units. Unless specifically stated as ±, all tolerances are total.
Standard

SPLIT TYPE BUSHINGS—DESIGN AND APPLICATION

1995-02-01
HISTORICAL
J835_199502
This SAE Standard presents the standard sizes, important dimensions, specialized measurement techniques, and tolerances for split type bushings. Both SI and inch sizes are shown; their dimensions are not exact equivalents. New designs shall use SI units. Unless specifically stated as ±, all tolerances are total.
Standard

Split Type Bushings – Design and Application

2011-06-13
CURRENT
J835_201106
This SAE Standard presents the standard sizes, important dimensions, specialized measurement techniques, and tolerances for split type bushings. Both SI and inch sizes are shown; their dimensions are not exact equivalents. New designs shall use SI units. Unless specifically stated as ±, all tolerances are total.
Standard

THRUST WASHERS—DESIGN AND APPLICATION

1995-02-01
HISTORICAL
J924_199502
This SAE Standard presents the basic size and tolerance information for the design and manufacture of thrust washers. In most cases, the standard employs nominal figures in both metric and inch-pound units and, therefore, does not necessarily provide exact equivalents.
Standard

THRUST WASHERS—DESIGN AND APPLICATION

1981-01-01
HISTORICAL
J924_198101
This SAE Standard presents the basic size and tolerance information for the design and manufacture of thrust washers. In most cases the standard employs nominal figures in both metric and inch-pound units and, therefore, does not necessarily provide exact equivalents.
Standard

Thrust Washers – Design and Application

2011-06-13
CURRENT
J924_201106
This SAE Standard presents the basic size and tolerance information for the design and manufacture of thrust washers. In most cases, the standard employs nominal figures in both metric and inch-pound units and, therefore, does not necessarily provide exact equivalents.
X