Refine Your Search

Topic

Author

Affiliation

Search Results

Article

2018-06-22
Technical Paper

<PP/SEBS> Compounds: Sealing an Easier Future for Automotive Designers and Specifiers

2002-07-09
2002-01-1997
There is a definite trend toward the increasing use of “Glass Encapsulation Technology” in the automotive industry. In this technology a glass object such as a window is placed within a mould and an elastomer is injected around the window giving a tight sealing system. A wide variety of materials are currently used as the sealing materials in either static or semi-static encapsulated glazing systems, including a wide range of “elastomers”. New thermoplastic elastomer compounds are being developed that are characterized by their consistent properties; including high melt-fluidity, very good surface appearance, sealing properties, and resistance to weathering. Compound performance is highly dependent on formulation variables as well as the chemistries of the base materials. KRATON® SEBS polymers1 are block copolymers of styrene and ethylene/butylene.
Technical Paper

1-D MODEL DEVELOPMENT TO STUDY THE DYNAMIC BEHAVIOR OF THE MECHANICAL DIODE CONFIGURATION APPLIED TO ONE-WAY CLUTCH (OWC)

2009-10-06
2009-36-0230
Two types of One-Way Clutch (OWC) are commonly used in automotive applications – the roller and the sprag types. Some manufacturers claim the advantages of a different type of OWC having a mechanical diode OWC. The aim of this research is to study the mechanical diode system in order to point out reasons that explain why this configuration is not a spread out system in automotive applications that require lockup functionality. To achieve this objective the research work focuses on the development of 1-D models to simulate system behavior and evaluate product performance against design variables. Improvements to the system are suggested based on the simulation results.
Technical Paper

100% Post-Consumer Recycled Nylon 6: Repolymerized Resin Provides Full Mechanical, Physical, & Aesthetic Properties

2000-03-06
2000-01-1394
The increased use of recycled resins can create a dilemma for automotive designers. On the one hand, there is a growing initiative to increase recycled materials content on vehicles, globally. On the other hand, traditional methods of recycling polymeric materials -both thermoplastics and thermosets - can lead to degradation of engineering, mechanical, processing, and / or aesthetic properties of the resin. In an era where quality rules, this situation forces designers to accept a much lower percentage of recyclate than they might otherwise wish to use or risk unacceptable property loss in molded parts - something no automaker can “afford ” for long. Hence, a valuable feedstream of materials (polymers) often ends up destined for a landfill once many consumer products are broken down and more easily reusable or recyclable materials are salvaged. As a case in point, each passenger car built globally contains an average of 15 - 20 kg of nylon polymers.
Technical Paper

110 Ton Payload on Two Axles with Hydro-Mechanical Drive

1966-02-01
660237
Late developments in tires and in lightweight, high horsepower engines and transmissions have enabled the earthmoving and mining industry equipment manufacturers to design and produce several types of preproduction 100-ton capacity trucks. A straight-forward approach to the design of a 110-ton end dump truck on two axles with a hydro-mechanical drive was followed by KW-Dart Truck Co. to produce a low cost per ton-mile vehicle.
Technical Paper

12V/14V to 36V/42V Automotive System Supply Voltage Change and the New Technologies

2002-11-19
2002-01-3557
This paper shows some aspects of the automotive voltage energy system level shift from 14 to 42 Volts. New features and prospective emissions/fuel economy requirements are creating electrical power needs in future automobiles, which today's conventional system cannot adequately supply at 14 Vdc (nominal, with a 12 Volt battery). It will be necessary to provide electric motors, DC/DC converters, inverters, battery management, and other electronic controls to meet higher voltage requirements. Suppliers must now include 42 Volt components and systems within their product range and make these new components as light, small, and cost efficient as possible. This paper is a compilation of several published works aiming to offer a synthesis to introduce this subject to the Brazilian Automotive Market.
Technical Paper

16 Optimisation of a Stratified Charge Strategy for a Direct Injected Two-Stroke Engine

2002-10-29
2002-32-1785
Direct fuel injection is becoming mandatory in two-stroke S.I. engines, since it prevents one of the major problems of these engines, that is fuel loss from the exhaust port. Another important problem is combustion irregularity at light loads, due to excessive presence of residual gas in the charge, and can be solved by charge stratification. High-pressure liquid fuel injection is able to control the mixing process inside the cylinder for getting either stratified charge at partial loads or quasi-stoichiometric conditions, as it is required at full load. This paper shows the development of this solution for a small engine for moped and light scooter, using numeric and experimental tools. In order to obtain the best charge characteristics at every load and engine speed, different combustion chambers have been conceived and studied, examining the effects of combustion chamber geometry, together with injector position and injection timing
Technical Paper

175°C-Capable Thermoplastic Elastomers for Automotive Air Management and Sealing Applications

2007-11-28
2007-01-2576
Flexibility, oil resistance, and the need for heat resistance to 150°C-plus temperatures have traditionally limited automotive design engineers to two options - thermoset rubber or heat-shielding conventional thermoplastic elastomers (TPE). Both of these options present limitations in part design, the ability to consolidate the number of components in a part of assembly, and on total cost. This paper presents a class of high-performance, flexible thermoplastic elastomers based on dynamically vulcanized polyacrylate (ACM) elastomer dispersed in a continuous matrix of polyamide (PA) thermoplastic. These materials are capable of sustained heat resistance to 150°C and short-term heat resistance to 175°C, without requiring heat shielding. Recent advancements in blow molding and functional testing of the PA//ACM TPEs for automotive air management (ducts) and underhood sealing applications will be shown.
Technical Paper

1958 Chevrolet LEVEL AIR SUSPENSION

1958-01-01
580049
CHEVROLET has made its new air-suspension system easily interchangeable in production line assembly with standard full-coil suspension by adopting a 4-link-type rear suspension with short and long arms. A feature of the system is the mounting of the leveling valves within the air-spring assemblies. These valves correct riding height continually at a moderate rate, regardless of whether the springs are leveling or operating in ride motion. The system provides constant frequency ride—ride comfort remains the same whether the car is occupied by the driver alone or is fully loaded.
Technical Paper

1978 U. S. Automotive Service Market: How Large is Large?

1981-02-01
810054
The size of the 1978 automotive service market is the total dollars spent on car and truck repair and maintenance in 1978. The 1978 personal-use automotive service market is the retail dollars spent in 1978 on repair and maintenance for cars and trucks used primarily for personal transportation. Service market estimates in this report do not include body repair parts and body repairs. Bureau of Economic Analysis data indicate a personal-use service market, excluding do-it-yourself (DIY) service, of $36 billion. A similar estimate made by General Motors Research Laboratories, based on a large national survey of actual consumer expenditures, is $ 37 billion. The personal-use automotive service market, excluding DIY, is roughly 3/4's the size of the total automotive service market, based on data from the Motor and Equipment Manufacturers Association and Frost & Sullivan, Inc.
Technical Paper

1D Simulation of Turbocharged Gasoline Direct Injection Engine for Transient Strategy Optimization

2005-04-11
2005-01-0693
This paper presents 1D engine simulation used for engine control strategy optimization for a twin-scroll turbocharged gasoline direct injection 2.0 L engine with twin camphaser. The results show good agreement of the engine model behavior with testbed acquisitions for a large amount of steady state set points and under transient operating conditions. The presented method demonstrates that a 1D engine code represents a useful and efficient tool during all steps of the engine control development process from design to real-time for such an advanced engine technology.
Technical Paper

2-Cycle Engine Exhaust Control Device

1991-11-01
911228
Motorcycles, as an international market product, must satisfy increasingly diverse user needs. These demands lead to various improvements being added and new systems and mechanisms being developed in an effort to arrive at an ideal product concept. Since the two-cycle engine offers particular advantages in combining light weight and compact size with a high output level, attention is focused on this type of engine for use in motorcross bikes and compact sports models. One drawback of the two-cycle engine, however, is that the output characteristic is sharply divided into low-speed and high-speed types. In order to overcome this disadvantage, motorcycle manufacturers are developing exhaust devices which will boost low-speed torque without sacrificing high-speed output. This presentation will describe some of the development and applications concerning exhaust devices already underway at Suzuki.
Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

2013-04-08
2013-01-1674
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
Technical Paper

20 A Combined Experimental and Numerical Approach for Motorcycle Crank Noise: Experimental Validation

2002-10-29
2002-32-1789
The demands for comfort and a cleaner environment have been increasing for the past years for motorcycle as well as car manufacturers. With the need to decrease the time-to-market, there is a clear drive to apply CAE-based methods in order to evaluate new designs and to propose design changes that solve any identified problems. More specifically, the demands on the comfort of the rider are not only related to ride & handling and vibration levels(1), but also to the noise levels generated by the motorcycle. This paper presents the virtual modeling of one-cylinder engine of a motorcycle that identifies the mechanism behind the generation of an annoying noise. Furthermore, different possible design changes were evaluated in order to solve the problem. A combined experimental and numerical approach was followed to achieve this. Experiments were used to identify important parameters that determine the engine behavior and thus are critical for the modeling of such an engine.
Technical Paper

2004 Nissan 3.5L Cam Cover Material Study: Aluminum, Magnesium and Composite

2005-04-11
2005-01-0727
The present study compares the NVH performance of three different materials used on cam covers in automobiles, Aluminum (Al), Magnesium (Mg) and Thermoplastic (TP). The cam cover design used for this comparison was the 2004 Nissan Maxima 3.5L production cam cover which is made of a thermoplastic (TP). The Al and Mg covers for this study were created by sandcast, due to time constraints, via laser scanning techniques using the 2004 Nissan Maxima 3.5L production thermoplastic cover design. Note that sand-cast covers generally provide a less quiet sound field than the standard casting method. The Nissan production cover comes with a production baffle made of a similar material as the cover. Testing was conducted with and without the production baffle for all covers. The study was conducted for the production boundary condition of a non-isolated cover and a Freudenberg-NOK (FNGP) partially isolated cover. Isolated bolt assemblies using elastomeric grommets were used to isolate the cover.
Technical Paper

2005 Ford GT - Interior Trim & Electrical

2004-03-08
2004-01-1256
Driven by a tight vehicle development schedule and unique performance and styling goals for the new Ford GT, a Ford-Lear team delivered a complete interior and electrical package in just 12 months. The team used new materials, processes and suppliers, and produced what may be the industry's first structural instrument panel.
Technical Paper

2005 Ford GT - Melding the Past and the Future

2004-03-08
2004-01-1251
The 2005 Ford GT high performance sports car was designed and built in keeping with the heritage of the 1960's LeMans winning GT40 while maintaining the image of the 2002 GT40 concept vehicle. This paper reviews the technical challenges in designing and building a super car in 12 months while meeting customer expectations in performance, styling, quality and regulatory requirements. A team of dedicated and performance inspired engineers and technical specialists from Ford Motor Company Special Vehicle Teams, Research and Advanced Engineering, Mayflower Vehicle Systems, Roush Industries, Lear, and Saleen Special Vehicles was assembled and tasked with designing the production 2005 vehicle in record time.
Technical Paper

2005 Ford GT Electrical & Electronics

2004-03-08
2004-01-1259
The Ford GT Program Team was allocated just 22 months from concept to production to complete the Electrical and Electronics systems of the Ford GT. This reduced vehicle program timing - unlike any other in Ford's history -- demanded that the team streamline the standard development process, which is typically 54 months. This aggressive schedule allowed only 12 weeks to design the entire electrical and electronic system architecture, route the wire harnesses, package the components, and manufacture and/or procure all components necessary for the first three-vehicle prototype build.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe Design and Engineering Technology

2005-04-11
2005-01-0466
The General Motors (GM) Corvette design team was challenged with providing a C6 Z06 vehicle spaceframe that maintained the structural performance of its C5 predecessor while reducing mass by at least 56 kg. An additional requirement inherent to the project was that the design must be integrated into the C6 assembly processes with minimal disruption, i.e. seamless integration. In response to this challenge, a collaborative team was formed, consisting of design engineers from General Motors, Alcoa and Dana Corporation. The result of this collaborative effort is an aluminum Z06 spaceframe that satisfies the high performance expectations of the vehicle while reducing the mass by approximately 62 kg. The frame consists of aluminum extrusions, castings and sheets joined by MIG welding, laser welding and self-piercing rivets. The extrusions are 6XXX series alloys, the castings are permanent mold A356 while the sheet panels are formed from the 5XXX series of alloys.
Technical Paper

2006 Corvette Z06 Carbon Fiber Structural Composite Panels- Design, Manufacturing and Material Development Considerations

2005-04-11
2005-01-0469
The General Motors Corvette Product Engineering Team is in a continual search for mass-reduction technologies which provide performance improvements that are affordable and add value for their customers. The structural composite panels of the C6 Z06 provided a unique opportunity to extend the use of carbon fiber reinforced materials to reduce mass and enhance performance. The entire vehicle set of composite panels was reviewed as candidates for material substitution, with the selection criteria based on the cost per kg of mass saved, tooling cost required, and the location of the mass to be saved. Priority was extended to mass savings at the front of the vehicle. After a carefully balanced selection process, two components, both requiring redesign because of the Z06’s wider stance, met the criteria: the Front Wheelhouse Outer Panel and Floor Panels. The current Floor Panels, first used on the C5, are large and are a balsawood-cored glass fiber reinforced composite design.
X