Refine Your Search

Topic

Search Results

Technical Paper

A Method to Improve the Solubility and Combustion Characteristics of Alcohol-Diesel Fuel Blends

1982-02-01
821113
This paper reports the results of two parallel investigations: An investigation on the solubility of alcohols in diesel fuels, and the diesel engine performance with the blended fuels. The investigation proposes an empirical formula for the solubility of alcohols in diesel fuels, as a function of temperature, water content, additive concentration and specific gravity of the diesel fuel. The engine performance when using the blended fuels was also investigated. Compared with conventional diesel fuels, the blended fuels show promise of better thermal efficiency, smoke free operation, and reduction of HC, NOx, and CO emissions.
Technical Paper

A Quantitative Analysis of Schlieren Photography for an Internal Combustion Engine Diagnostics

1991-02-01
910730
This report describes the possibility of quantitative analysis of Schlieren photographs as an internal combustion engine diagnostic. Using a recently developed photographic analysis system, it was attempted to analyze Schlieren photographs. Results showed simple integration calculations produced significant distortion in the analyzed results. To eliminate the distortion, some correction techniques were developed in this research. Accuracy of the analyzed results were evaluated roughly with uncertainty analysis. The results showed that this analysis technique can be one of the approximate diagnostics for the measurement of fuel vapor and density distribution in internal combustion engine research. SCHLIEREN photography is one of the most popular visualization techniques in the research of internal combustion engines. Although the photographs have density information in themselves, they are used mainly for the purpose of qualitative visualization.
Technical Paper

A Study of Lean Burn of a 4 Stroke Gasoline Engine by the Aid of Low Pressure Air Assisted In-Cylinder Injection - Part II

1999-10-25
1999-01-3689
Lean-burn engines now being developed employ in-cylinder injection which requires high pressures and so necessitates expensive injection equipment. The injection system proposed here is an air assisted in-cylinder injection system which is injecting a mixture of air and fuel in the cylinder during the intake stroke and allowing atomization at lower injection pressures than those necessary in compressing fuel with a usual solid injection. This time, the experiments used a testing engine of a 4 stroke gasoline OHV type replacing the Side Valve type. Performance with a small depression in the main combustion chamber was investigated with a spark plug and reed valve installed in the depression. The engine was operated then following the same method as last year (SAE 982698). As a result, the lean burn method employed here was possible over a wide range of engine speeds and loads. Moreover, it was also shown that this operation was possible with a fully opened throttle valve.
Technical Paper

Achievement of Stable and Clean Combustion Over a Wide Operating Range in a Spark-Assisted IDI Diesel Engine with Neat Ethanol

1984-02-01
840517
Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated. By optimizing the design factors, operation with high efficiency and low exhaust emissions was achieved.
Technical Paper

An Investigation on the Simultaneous Reduction of Particulate and NOx by Controlling Both the Turbulence and the Mixture Formation in DI Diesel Engines

1993-10-01
932797
This paper presents experimental results of the reduction of both particulate and NOx emitted from direct injection diesel engines by a two stage combustion process. The primary combustion is made very rich to reduce NOx and then the particulate is oxidized by strong turbulence generated during the secondary combustion. The rich mixture is formed by low pressure fuel injection and a small cavity combustion chamber configuration. The strong turbulence is generated by a jet of burned gas from an auxiliary chamber installed at the cylinder head. The results showed that NOx was reduced significantly while maintaining fuel consumption and particulate emissions. An investigation was also carried out on the particulate reduction process in the combustion chamber with the turbulence by gas sampling and in-cylinder observation with an optical fiber scope and a high speed camera.
Technical Paper

Analysis of Contribution to SPM by Organic Matters Using High-Performance Liquid Chromatography (HPLC)

2002-03-04
2002-01-0653
Most countries consider it is harmful for humans to inhale SPM of fine organic particles and elemental carbon less than 2.5 μ in diameter1,2). It is generally believed that organic matters in SPM are mainly composed of diesel exhaust particulate and soot from residential chimneys or industrial smokestacks3,4). To determine the contribution ratios of several organic substances to SPM, we characterized SPM, diesel exhaust particulate (DEP), powdered summer radial tire, and bitumen, using high performance liquid chromatography, field desorption mass spectrometry and linear theory.
Technical Paper

Analysis of Diesel Soot Formation under Varied Ignition Lag with a Laser Light Extinction Method

1990-02-01
900640
Soot emission from diesel engines generally increases with shorter ignition lags. However, the detailed process and mechanism of this phenomenon has not been well understood. This investigation attempts to observe and analyze the in-chamber soot formation process at various ignition lags by high-speed photography of the direct flame images and laser shadowgraphs as well as the laser light extinction. In the experiment, the separation of soot concentration from the soot-fuel mixture concentration was established by subtracting the laser light extinction intensity through a non-firing chamber from that through a firing chamber. It was found that the soot concentration in the swirl chamber reached a maximum value immediately after the start of combustion, and then decreased rapidly. With shorter ignition lags, the maximum and final soot concentrations in the chamber increased.
Technical Paper

Analysis of NO Formation Characteristics and Control Concepts in Diesel Engines from NO Reaction-Kinetic Considerations

1995-02-01
950215
This paper uses NO Reaction Kinetic to determine NO formation characteristics in diesel engines. The NO formation was calculated by Extended Zel'dovich Reaction Kinetics in a diffusion process. The results show that the NO formation rate is independent of the mixing of the combustion gas, and that internal EGR (combustion gas mixing in a cylinder) has no effect on NO reduction. The paper also shows the potential of two stage combustion, and its effect strongly depends on the time-scale of mixing. Additionally the paper investigates the mechanism of increased NOx emissions in high pressure fuel injection.
Technical Paper

Catalytic Effects of Metallic Fuel Additives on Oxidation Characteristics of Trapped Diesel Soot

1988-09-01
881224
The oxidations of Crapped diesel soots containing catalytic metals such as Ca, Ba, Fe, or Ni were characterized through thermogravimetric analysis with a thermobalance. Soot particles were generated by a single cylinder IDI diesel engine with metallic fuel additives. A two-stage oxidation process was observed with the metalcontalning soots. It was found that the first stage of oxidation is catalytically promoted by metal additives resulting in an enhanced reaction rate and a reduced activation energy. Soot reduction in the rapid first stage increases with increases in metal content. Soots containing Ba and Ca are oxidized most rapidly due to the larger reduction during the first stage. The second stage of oxidation is also slightly promoted by metal addition. The ignition temperature of the collected soot is substantially reduced by the metal additives.
Technical Paper

Catalytic Reduction of NOx in Actual Diesel Engine Exhaust

1992-02-01
920091
Copper ion-exchanged ZSM-5 zeolite catalyst, which reduces nitrogen oxides (NOx) in the presence of oxygen and hydrocarbons, was applied to actual diesel engine exhaust. Copper ion-exchanged ZSM-5 zeolite effectively reduced NOx by 25% in normal engine operation, and by 80% when hydrocarbons in the exhaust were increased. Water in the exhaust gas decreased the NOx reduction efficiency, but oxygen and sulfur appeared to have only a small effect. Maximum NOx reduction was observed at 400°C irrespective of hydrocarbon species, and did not decrease with space velocity up to values of 20,000 1/h. THE PURPOSE of this paper is to evaluate the possibilities and problems in catalytic reduction of NOx in actual diesel engine exhaust. Here, a copper ion-exchanged ZSM-5 zeolite (Cu-Z) catalyst was applied to diesel engine exhaust to examine the dependency of the NOx reduction efficiency on temperature and space velocity. The effects of oxygen, water and hydrocarbons were also examined.
Technical Paper

Characteristics of Diesel Combustion in Low Oxygen Mixtures with Ultra-High EGR

2006-04-03
2006-01-1147
Ultra-low NOx and smokeless operation at higher loads up to half of the rated torque is attempted with large ratios of cold EGR. NOx decreases below 6 ppm (0.05 g/(kW·h)) and soot significantly increases when first decreasing the oxygen concentration to 16% with cold EGR, but after peaking at 12-14% oxygen, soot then deceases sharply to essentially zero at 9-10% oxygen while maintaining ultra low NOx and regardless of fuel injection quantity. However, at higher loads, with the oxygen concentration below 9-10%, the air/fuel ratio has to be over-rich to exceed half of rated torque, and thermal efficiency, CO, and THC deteriorate significantly. As EGR rate increases, exhaust gas emissions and thermal efficiency vary with the intake oxygen content rather than with the excess air ratio.
Technical Paper

Characteristics of Diesel Soot Suppression with Soluble Fuel Additives

1987-09-01
871612
Experiments on a large number of soluble fuel additives were systematically conducted for diesel soot reduction. It was found that Ca and Ba were the most effective soot suppressors. The main determinants of soot reduction were: the metal mol-content of the fuel, the excess air factor, and the gas turbulence in the combustion chamber. The soot reduction ratio was expressed by an exponential function of the metal mol-content in the fuel, depending on the metal but independent of the metal compound. A rise in excess air factor or gas turbulence increased the value of a coefficient in the function, resulting in larger reductions in soot with the fuel additives. High-speed soot sampling from the cylinder showed that with the metal additive, the soot concentration in the combustion chamber was substantially reduced during the whole period of combustion. It is thought that the additive acts as a catalyst not only to improve soot oxidation but also to suppress soot formation.
Technical Paper

Characteristics of Unburned Hydrocarbon Emissions in a Low Compression Ratio DI Diesel Engine

2009-04-20
2009-01-1526
In a DI diesel engine, THC emissions increase significantly with lower compression ratios, a low coolant temperature, or during the transient state. During the transient after a load increase, THC emissions are increased significantly to very high concentrations from just after the start of the load increase until around the 10th cycle, then rapidly decreased until the 20th cycle, before gradually decreasing to a steady state value after 1000 cycles. In the fully-warmed steady state operation with a compression ratio of 16 and diesel fuel, THC is reasonably low, but THC increases with lower coolant temperatures or during the transient period just after increasing the load. This THC increase is due to the formation of over-lean mixture with the longer ignition delay and also due to the fuel adhering to the combustion chamber walls. A low distillation temperature fuel such as normal heptane can eliminate the THC increase.
Technical Paper

Chemical-Kinetic Analysis on PAH Formation Mechanisms of Oxygenated Fuels

2003-10-27
2003-01-3190
The thermal cracking and polyaromatic hydrocarbon (PAH) formation processes of dimethyl ether (DME), ethanol, and ethane were investigated with chemical kinetics to determine the soot formation mechanism of oxygenated fuels. The modeling analyzed three processes, an isothermal constant pressure condition, a temperature rising condition under a constant pressure, and an unsteady condition approximating diesel combustion. With the same mole number of oxygen atoms, the DME rich mixtures form much carbon monoxide and methane and very little non-methane HC and PAH, in comparison with ethanol or ethane mixtures. This suggests that the existence of the C-C bond promotes the formation of PAH and soot.
Technical Paper

Combustion Control and Operating Range Expansion in an HCCI Engine with Selective Use of Fuels with Different Low-Temperature Oxidation Characteristics

2003-05-19
2003-01-1827
Light naphtha, which exhibits two-stage ignition, was induced from the intake manifold for ignition enhancement and a low ignitability fuel or water, which does not exhibit low temperature oxidation, was directly injected early in the compression stroke for ignition suppression in an HCCI engine. Their quantitative balance was flexibly controlled to optimize ignition timing according to operating condition. Ultra-low NOx and smokeless combustion without knocking or misfiring was realized over a wide operating range. Alcohols inhibit low temperature oxidation more strongly than other oxygenated or unoxygenated hydrocarbons, water, and hydrogen. Chemical kinetic modeling for methanol showed a reduction of OH radical concentration before the onset of low temperature oxidation, and this may be the main mechanism by which alcohols inhibit low temperature oxidation.
Technical Paper

Combustion and Emissions in a New Concept DI Stratified Charge Engine with Two-Stage Fuel Injection

1994-03-01
940675
A new concept DISC engine equipped with a two-stage injection system was developed. The engine was modified from a single cylinder DI diesel engine with large cylinder diameter (135mm). Combustion characteristics and exhaust emissions with regular gasoline were examined, and the experiments were also made with gasoline-diesel fuel blends with higher boiling temperatures and lower octane numbers. To realize stratified mixture distribution in combustion chamber flexibly, the fuel was injected in two-stages: the first stage was before the compression stroke to create a uniform premixed lean mixture and the second stage was at the end of the compression stroke to maintain stable ignition and faster combustion. In this paper, the effect of the two-stage injection on combustion and exhaust emissions were analyzed under several operating conditions.
Technical Paper

Combustion in a Two-stage Injection PCCI Engine With Lower Distillation-temperature Fuels

2004-06-08
2004-01-1914
The combustion characteristics in a partially premixed charge compression ignition (PCCI) engine with n-hexane were compared with ordinary diesel fuel to evaluate combustion improvements with lower distillation-temperature fuels. In the PCCI engine, a lean mixture was formed reasonably with early stage injection and the additional fuel was supplied with a second stage fuel injection after ignition. With n-hexane, thermal efficiency improved while simultaneously maintaining low NOx and smokeless combustion. A CFD analysis simulated the mixture formation processes and showed that the uniformity of the mixture with the first stage injection improves with lower distillation-temperature fuels.
Technical Paper

Cycle-to-Cycle Transient Characteristics of Exhaust Gas Emissions from a Diesel Engine with Different Increasing and Decreasing Load Patterns

1997-02-24
970750
Cycle-to-cycle changes in diesel exhaust gas emissions were investigated under two transient operation patterns: One, “an interval step decreasing and increasing load”, where the fuel amount is rapidly decreased from high to low loads, and after an interval, Δtint the fuel amount is abruptly returned to the initial level. The other is “a ramp increasing load”, where the fuel amount is increased gradually. Except just after the step increase in fuel amounts, the THC emissions were almost completely determined by the piston wall temperature and fuel amount. However, the THC concentrations immediately after the step increase in fuel amounts were much higher than the value of the corresponding steady state operation with the same piston wall temperature. This overshoot concentration, ΔTHC, was almost constant at different intervals, Δtint and it can be suppressed by ramp increased loading.
Technical Paper

Cycle-to-cycle Transient Characteristics of Diesel Emissions during Starting

1999-10-25
1999-01-3495
Changes in exhaust gas emissions during starting in a DI diesel engine were investigated. The THC after starting increased until around the 50th cycle when the fuel deposited on the combustion chamber showed the maximum, and THC then decreased to reach a steady value after about 1000 cycles when the piston wall temperature became constant. The NOx showed an initial higher peak just after starting, and increased to a steady value after about 1000 cycles. Exhaust odor had a strong correlation with THC, and at the early stage odor was stronger than would be expected from the THC concentration. The THC increased with increased fuel injection amounts, decreased cranking speeds, and fuels with higher viscosity, higher 90% distillation temperature, and lower ignitability.
Technical Paper

Dependence of Ultra-High EGR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio

2006-10-16
2006-01-3386
This research investigates the influences of the injection timing, injection pressure, and compression ratio on the combustion and exhaust emissions in a single cylinder 1.0 L DI diesel engine operating with ultra-high EGR. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. Smokeless combustion is realized with an intake oxygen content of only 9-10% regardless of the injection pressure. Reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and IMEP. However, the thermal efficiency deteriorates with excessively low compression ratios.
X