Refine Your Search

Topic

Search Results

Standard

APPLICATION GUIDE TO RADIAL LIP SEALS

1989-08-01
HISTORICAL
J946_198908
This recommended practice is intended as a guide to the use of radial lip type seals. It has been prepared from existing literature, which includes standards, specifications, and catalog data of both oil seal producers and users and includes generally-accepted information and data. The main reason for the preparation of the recommended practice is to make standard information available in one document to the users of oil seals.
Standard

APPLICATION GUIDE TO RADIAL LIP SEALS

1991-10-01
HISTORICAL
J946_199110
This SAE Recommended Practice is intended as a guide to the use of radial lip type seals. It has been prepared from existing literature, which includes standards, specifications, and catalog data of both oil seal producers and users and includes generally accepted information and data. The main reason for the preparation of the document is to make standard information available in one document to the users of oil seals.
Standard

CHEMICAL METHODS FOR THE MEASUREMENT OF NONREGULATED DIESEL EMISSIONS

1989-10-01
HISTORICAL
J1936_198910
This document encompasses analytical procedures for measuring nonregulated diesel exhaust emissions. Methods are recommended for the measurement of aldehydes and carbonyl compounds, sulfates and the characterization of diesel exhaust particulates. Informational methods are presented for the measurement of polycyclic aromatic hydrocarbons (PAH) in diesel exhaust particulate samples. The procedures are based on current proven chemical and engineering practices. However, it should be noted that the procedures are subject to change to keep pace with established experience and technology.
Standard

CONSTANT VOLUME SAMPLER SYSTEM FOR EXHAUST EMISSIONS MEASUREMENT

1978-04-01
HISTORICAL
J1094A_197804
This SAE Recommended Practice describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. In some areas of CVS practice, alternate procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: 1. Introduction 2. Definitions 3. Test Equipment 3.1 Sampler 3.2 Bag Analysis 3.3 Modal Analysis 3.4 Instrument Operating Procedures 3.5 Supplementary Discussions 3.6 Tailpipe Connections 3.7 Chassis Dynamometer 4. Operating and Calibrating Procedure 4.1 Calibration 4.2 Operating Procedures 5. Data Analysis 5.1 Bag Analysis 5.2 Modal Analysis 5.3 Background 5.4 Fuel Economy 6. Safety
Standard

CONSTANT VOLUME SAMPLER SYSTEM FOR EXHAUST EMISSIONS MEASUREMENT

1992-06-01
HISTORICAL
J1094_199206
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1988-06-01
HISTORICAL
J215_198806
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1980-01-01
HISTORICAL
J215_198001
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1970-11-01
HISTORICAL
J215_197011
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1995-03-01
HISTORICAL
J215_199503
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

Constant Volume Sampler System for Exhaust Emissions Measurement

2011-09-06
CURRENT
J1094_201109
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

Continuous Hydrocarbon Analysis of Diesel Emissions

2002-10-21
CURRENT
J215_200210
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented. This SAE Recommended Practice provides for the continuous measurement of the hydrocarbon concentration in diesel exhaust.
Standard

Continuously Variable Transmission Test Code For Passenger Cars

2000-04-12
HISTORICAL
J1618_200004
To measure the performance characteristics of Continuously Variable Transmissions (CVT). It outlines dynamometer tests that cover the range of operation and provides a method of presenting the test data. This procedure must be followed with similar test facilities so that results obtained from different laboratories are comparable.
Standard

DIESEL ENGINE EMISSION MEASUREMENT PROCEDURE

1990-06-01
HISTORICAL
J1003_199006
This SAE Recommended Practice is intended for use as a test procedure to determine the gaseous emission levels of diesel engines. Its purpose is to provide a map of an engine's emissions characteristics which, through use of the proper weighting factors, can be used as a measure of that engine's emission levels under various applications. The emission results for hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide are expressed in units of grams per kilowatt hour (grams/brake horsepower hour) and represent the mass rate of emissions per unit of work accomplished. The emissions are measured in accordance with SAE Recommended Practices J177, J215, and J244 using nondispersive infrared equipment for CO and CO2, a heated flame ionization analyzer for HC, and a high performance NDIR or a chemiluminescence analyzer for NOx. All emissions are measured during steady-state engine operation.
Standard

ENGINE WEIGHT AND DIMENSIONS

1990-04-01
HISTORICAL
J2038_199004
This SAE Recommended Practice has been developed to provide a uniform method for reporting the weight and dimensions of internal combustion engines. SAE J2038 is not intended to cover the technical interface between the engine and transmission. To locate the rear of the engine crankshaft in relationship to the rear of the flywheel housing, refer to SAE J617.
Standard

ENGINE WEIGHT, DIMENSIONS, CENTER OF GRAVITY, AND MOMENT OF INERTIA

1992-04-01
HISTORICAL
J2038_199204
This SAE Recommended Practice has been developed to provide a uniform method for reporting the weight, dimensions, center of gravity, and moment of inertia of internal combustion engines. SAE J2038 is not intended to cover the technical interface between the engine and transmission. To locate the rear of the engine crankshaft in relationship to the rear of the flywheel housing, refer to SAE J617.
Standard

HOUSING INTERNAL DIMENSIONS FOR SINGLE AND TWO PLATE SPRING LOADED CLUTCHES

1987-08-01
HISTORICAL
J373_198708
This SAE Recommended Practice defines the minimum internal dimensions for clutch housings to provide adequate clearance for single and two plate spring loaded clutches. Consult SAE J617c (June, 1976) for housing flange dimensions. Consult SAE J618 JUN80 and J619 JUN80 for spring loaded clutch flywheel dimensions F and G and other dimensional data. Table 1 provides housing minimum internal dimensions for single and two flange spring loaded clutches.
Standard

HOUSING INTERNAL DIMENSIONS FOR SINGLE AND TWO PLATE SPRING LOADED CLUTCHES

1978-09-01
HISTORICAL
J373A_197809
This SAE Recommended Practice defines the minimum internal dimensions for clutch housings to provide adequate clearance for single and two plate spring loaded clutches. Consult SAE J617c (June, 1976) for housing flange dimensions. Consult SAE J618d (May, 1974) and J619d (May, 1974) for spring loaded clutch flywheel dimensions E and G and other dimensional data. Table 1 provides housing minimum internal dimensions for single and two flange spring loaded clutches.
Standard

INSTRUMENTATION AND TECHNIQUES FOR VEHICLE REFUELING EMISSIONS MEASUREMENT

1993-05-01
HISTORICAL
J1045_199305
This SAE Recommended Practice describes a procedure for measuring the hydrocarbon emissions occurring during the refueling of passenger cars and light trucks. It can be used as a method for investigating the effects of temperatures, fuel characteristics, etc., on refueling emissions in the laboratory. It also can be used to determine the effectiveness of evaporative emissions control systems to control refueling emissions. For this latter use, standard temperatures, fuel volatility, and fuel quantities are specified.
X